Non-additive Lie centralizer of infinite strictly upper triangular matrices
محورهای موضوعی : Linear and multilinear algebra; matrix theory
1 - Department of Mathematics, Centre R\'{e}gional des M\'{e}tiers d'Education et de Formation (CRMEF) Tangier, Morocco
کلید واژه: Lie centralizer, strictly upper triangular matrices, commuting map,
چکیده مقاله :
Let $\mathcal{F}$ be an field of zero characteristic and $N_{\infty}(\mathcal{F})$ be the algebra of infinite strictly upper triangularmatrices with entries in $\mathcal{F}$, and $f:N_{\infty}(\mathcal{F})\rightarrow N_{\infty}(\mathcal{F})$ be a non-additive Lie centralizer of $N_{\infty }(\mathcal{F})$; that is, a map satisfying that $f([X,Y])=[f(X),Y]$for all $X,Y\in N_{\infty}(\mathcal{F})$. We prove that $f(X)=\lambda X$,where $\lambda \in \mathcal{F}$.
[1] J. Bounds, Commuting maps over the ring of strictly upper triangular matrices, Linear Algebra Appl. 507 (2016), 132-136.
[2] M. Bresar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), 385-394.
[3] M. Bresar, Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), 525-546.
[4] W. S. Cheung, Commuting maps of triangular algebras, J. London Math. Soc. 63 (2) (2001), 117-127.
[5] D. Eremita, Commuting traces of upper triangular matrix rings, Aequat. Math. 91 (2017), 563-578.
[6] A. Fosner, W. Jing, Lie centralizers on triangular rings and nest algebras, Adv. Oper. Theory, in press.
[7] W. Franca, Commuting maps on some subsets of matrices that are not closed under addition, Linear Algebra Appl. 437 (2012), 388-391.
[8] F. Ghomanjani, M. A. Bahmani, A note on Lie centralizer maps, Palest. J. Math. 7 (2) (2018), 468-471.
[9] R. Slowik, Expressing infinite matrices as products of involutions, Linear Algebra Appl. 438 (2013), 399-404.
[10] J. Vukman, An identity related to centralizers in semiprime rings, Comment. Math. Univ. Carolin. 40 (3) (1999), 447-456.
[11] B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolin. 32 (4) (1991), 609-614.