Exposure to Insecticide Mixture of Cypermethrin and Dichlorvos Induced Neurodegeneration by Reducing Antioxidant Capacity in Striatum
محورهای موضوعی :
Princewill Udodi
1
,
Tobechi ANONYE
2
,
Damian Ezejindu
3
,
Joshua ABUGU
4
,
Chizubelu OMILE
5
,
Ifechukwu Obiesie
6
,
Roseline OGWO
7
,
Chukwudumebi Abattam
8
,
Darlington AKUKWU
9
,
Godwin Uloneme
10
,
Charles Oyinbo
11
1 - Department of Anatomy, Faculty of Basic Medical Sciences, Nnamdi Azikiwe University, Nigeria
2 - Department of Anatomy, Faculty of Basic Medical Sciences, Nnamdi Azikiwe University, Nigeria
3 - Department of Anatomy, Faculty of Basic Medical Sciences, Nnamdi Azikiwe University, Nigeria
4 - Department of Anatomy, Faculty of Basic Medical Sciences, Nnamdi Azikiwe University, Nigeria
5 - Department of Anatomy, Faculty of Basic Medical Sciences, Nnamdi Azikiwe University, Nigeria
6 - Department of Anatomy, Faculty of Basic Medical Sciences, Nnamdi Azikiwe University, Nigeria
7 - Department of Anatomy, Faculty of Basic Medical Sciences, Nnamdi Azikiwe University, Nigeria
8 - Department of Anatomy, Faculty of Basic Medical Sciences, Nnamdi Azikiwe University, Nigeria
9 - Department of Human Anatomy, Imo State University, Owerri, Imo State, Nigeria
10 - Department of Human Anatomy, Imo State University, Owerri, Imo State, Nigeria
11 - Department of Anatomy, Niger Delta University, Amassoma, Bayelsa State, Nigeria
تاریخ دریافت : 1401/04/01
تاریخ پذیرش : 1401/07/16
تاریخ انتشار : 1402/06/10
کلید واژه:
Malondialdehyde,
Histopathology,
Cypermethrin,
Dichlorvos,
Pyrethroid,
Chromatolysis,
چکیده مقاله :
To evaluate the effect of cypermethrin (CP) and dichlorvos (2,2-dichlorovinyl dimethyl phosphate, DDVP) on the striatum of adult Wistar rats. Thirty-two animals were grouped into 4; group A (control) inhaled fresh air, and groups B, C, and D were exposed to a formulation of 5 mm-1 (4.4 ppm) of dichlorvos and 10 mm-1 (8.7 ppm) of cypermethrin insecticide for 2hrs/day, 3hrs/day and 4hrs/day respectively. We utilized the wire suspension test to demonstrate the neurobehavioral changes across the four groups of animals to identify the animal groups that have lost their motor function. Following the neurobehavioral test, the animals were weighed, anesthesized and dissected for brain tissue harvesting. Half of the brain tissue was frozen for biochemical analysis while the other part was fixed in 10% Neutral Buffered Formalin for two days and grossed to isolate the brain tissue of interest for histopathology. The results from the neurobehavioral studies show a significant decrease in motor function of the experimental groups. There was a significant elevation in the malondialdehyde and glucose levels of all the exposed groups, while their various antioxidant levels decreased significantly (p<0.05). Histopathological features were observed across the exposed groups ranging from the presence of vacuolated neuronal cells, neuronal cell shrinkage, and chromatolysis, which characterize the neurodegenerative effect of cypermethrin and dichlorvos on the striatum. This study indicates that a combined administration of cypermethrin and dichlorvos exerts a neurodegenerative effect on the striatum of adult Wistar rats.
منابع و مأخذ:
Snow R.W., Trape J.F., Marsh K., 2001. The past, present and future of childhood malaria mortality in Africa. TRENDS in Parasitology. 17(12), 593-597.
Mostafalou S., Abdollahi M., 2013. Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicology and Applied Pharmacology. 268(2), 157–177.
Igho O.E., Afoke I.K., 2014. A histomorphological analysis of pyrethroid pesticide on the cerebrum and cerebellum of adult sister albino rat. Journal of Experimental and Clinical Anatomy. 13(2), 54–59.
Jayakumar R., Nagarjuna A., Deuraju T., Jayantha R., 2008. Alteration of haematological Profiles due to cypermethrin Toxicosis in Rana hexadactyla. J Indian Soc Toxicol. 4(2), 18-21.
Macan J., Varnai V.M., Turk R., 2006. Health effects of pyrethrins and pyretheroids. Arch Hig Rada Toksikol. 57(2), 237-43.
Garba S.H., Adelaiye A.B., Mshelia L.Y., 2007. Histopathological and biochemical changes in the rats kidney following exposure to a pyrethroid based mosquito coil. Journal of Applied Sciences Research. 3(12), 1788-1793.
Chen S., Zhang Z., He F., 1991. An epidemiological study on occupational acute pyrethroid poisoning in cotton farmers. Br J Ind Med. 48, 77-81.
Soderlund D.M., 2012. Molecular mechanisms of pyrethroid insecticide neurotoxicity: recent advances. Arch Toxicol. 86(2), 165-81.
Brenda E., Sookee A., Stephen A.R., 2018. Prenatal Exposure to DDT and Pyrethroids for Malaria Control and Child Neurodevelopment: The VHEMBE Cohort, South Africa. Environmental Health Perspectives. 126(4), 047004.
Udodi P.S., Nnadi E.I., Ezejindu D.N., Okafor E.C., Obiesie I.J., Oyinbo C.A., Darlington C.A., Godwin C.U., 2022. The Neurotoxic Impact of Formulated Pyrethroid Insecticide on the Substantia Nigra of Adult Wistar Rat. Journal of Chemical Health Risks. 12(2), 323-334.
Yager L.M., Garcia A.F., Wunsch A.M., Ferguson S.M., 2015. The ins and outs of the striatum: Role in drug addiction. Neuroscience. 301, 529–541.
Taylor S.B., Lewis C.R., Olive M.F., 2013. The neurocircuitry of illicit psychostimulant addiction: acute and chronic effects in humans. Subst Abuse Rehabil. 4, 29–43.
Ferré S., Lluís C., Justinova Z., Quiroz C., Orru M., Navarro G., Canela E.I., Franco R., Goldberg S.R., 2010. Adenosine-cannabinoid receptor interactions. Implications for striatal function. Br J Pharmacol. 160(3), 443–453.
Organisation for Economic Co-operation and Development (OECD). Test No. 433: Acute Inhalation Toxicity: Fixed Concentration Procedure, OECD Guidelines for the Testing of Chemicals OECD Publishing, Paris, 4 (2018).
National Research Council (NRC), 2011. National Institutes of Health Guide for the Care and Use of Laboratory Animals.
Cheng Y.S., Bowen L., Rando R.J., Postlethwait E.M., Squadrito G.L., Matalon S., 2010. Exposing animals to oxidant gases: nose only vs. whole body. Proc Am Thorac Soc. 7(4), 264-8.
Ohkawa H., Ohishi N., Yagi K., 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 95(2), 351-8.
Ellman G.L., 1959. Tissue sulfhydryl groups. Arch Biochem Biophys. 82, 70-77
Kakkar P., Das B., Viswanathan P.N., 1984. A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys. 21(2), 130-2.
Sinha K.A., 1972. Colorimetric Assay of Catalase. Analytical Biochemistry. 47, 389-394.
Rotruck J.T., Pope A.L., Ganther H.E., Swanson A.B., Hafeman D.G., Hoekstra W.G., 1973. Selenium: biochemical role as a component of glutathione peroxidase. Science. 179(4073), 588-90.
Carlberg I., Mannervik B., 1985. Glutathione reductase. Methods Enzymol. 113, 484-90.
Habig W.H., Pabst M.J., Jakoby W.B., 1974. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 249(22), 7130-9.
Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J., 1951. Protein measurement with the Folin phenol reagent. J Biol Chem. 193(1), 265-75.
Ellman G.L., Courtney K.D., Jr. Andres V., Feather-Stone R.M., 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 7, 88-95.
Uchyjama M., Mihara M., 1997. Determination of malondialdehyde precursor in tissues by thiobarbituric acid test. Anal Biochem. 86, 271-8.
Feldman A.T., Wolfe D., 2014. Tissue processing and hematoxylin and eosin staining. Methods in Molecular Biology. 1180, 31-43.
Drury R., Wallington B., 1973. Carleton’s histological technique. 4th ed. Toronto, NY: Oxford University Press.
Bradberry S.M., Cage S.A., Proudfoot A.T., Vale J.A., 2005. Poisoning due to pyrethroids. Toxicological Reviews. 24(2), 93-106.
Soderlund D.M., Clark J.M., Sheets L.P., Mullin L.S., Piccirillo V.J., Sargent D., Stevens J.T., Weiner M.L., 2002. Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology. 171(1), 3-59.
Costa L.G., 2015. The neurotoxicity of organochlorine and pyrethroid pesticides. Handbook of Clinical Neurology. 131, 135-148.
Glorennec P., Serrano T., Fravallo M., Warembourg C., Monfort C., Cordier S., Viel J., Le Gléau F., Le Bot B., Chevrier C., 2017. Determinants of children’s exposure to pyrethroid insecticides in western France. Environ Int. 104, 76–82.
33 Ranjkesh M.R., Naghili B., Goldust M., Rezaee E., 2013. The efficacy of permethrin 5% vs. oral ivermectin for the treatment of scabies. Annals of Parasitology. 59(4), 189-94.
Orsborne J., DeRaedt B.S., Hendy A., Gezan S., Kaur H., Wilder-Smith A., Lindsay S.W., Logan J., 2016. Personal protection of permethrin-treated clothing against Aedes aegypti, the vector of Dengue and Zika virus, in the Laboratory. 11, e0152805.
Wylie B.J., Hauptman M., Woolf A.D., Goldman R.H., 2016. Insect repellants during pregnancy in the era of the Zika virus. Obstetrics and Gynecology. 128(5), 1111.
Yadav S., Dewan R.S., Rani A., Chopra J., 2021. Effect of inhalation of pyrethroid based mosquito vaporisers fumes on the body weight of male albinos Wistar rat. Journal of Clinical and Diagnostic Research. 15(4), AC01-AC03
McDaniel K.L., Moser V.C., 1993. Utility of a neurobehavioral screening battery for differentiating the effects of two pyrethroids, permethrin and cypermethrin. Neurotoxicology. 15, 71–73.
Tennekes H.A., 2010. The Significance of the Druckrey–küpfmüller Equation for Risk Assessment—the Toxicity of Neonicotinoid Insecticides to Arthropods Is Reinforced by Exposure Time. Toxicology Journal. 280, 173-175.
Verma K.S., Pandey R., Ayachi A., 2014. Nutritional assessment of different parts of Acacia catec hu Willd. collected from central India. International Journal of Pharmaceutical Science Research. 5(7), 2980-2986.
Giray B., Gurbay A., Hincal F., 2001. Cypermethrin-induced oxidative stress in rat brain and liver is prevented by Vitamin E or allopurinol. Toxicol Lett. 18, 139–146.
Tiwari M.N., Singh A.K., Israr A., Upadhyay G., Singh D., Patel D.K., Singh C., Prakash O., Singh M.P., 2010. Effects of cypermethrin on monoamine transporters, xenobiotic metabolizing enzymes and lipid peroxidation in the rat nigrostriatal system. Free Radic Res. 44, 1416–1424.
Ozyurt H., Sogut S., Yildirim Z., 2004. Inhibitory effect of caffeic acid phenethyl ester on bleomycine-induced lung fibrosis in rats. Clinica Chimica Acta. 339, 65-75.
Kale M., Rathore N., John S., Bhatnagar D., 1999. Lipid peroxidative damage on pyrethroid exposure and alterations in antioxidant status in rat erythrocytes: a possible involvement of reactive oxygen species. Toxicol Lett. 105, 197–205.
El-Demerdash F.M., 2011. Lipid peroxidation, oxidative stress and acetylcholinesterase in rat brain exposed to organophosphate and pyrethroid insecticides. Food Chem Toxicol. 49(6), 1346-52.
45 Delevel L., Kaplowitz N., 1991. Glutathione Metabolism and its role in hepatotoxicity. Pharmacology and Therapentics. 52, 287– 305.
Meister A., Anderson M.E., 1983. Glutathione. Ann Rev Biochem. 52, 711–760.
Maran E., Fernández M., Barbieri P., Font G., Ruiz M.J., 2009. Effects of four carbamate compounds on antioxidant parameters. Ecotoxicology and Environmental Safety. 72(3), 922-930.
Thompson R.W., Valentine H.L., Valentine W.M., 2002. In vivo and in vitro hepatotoxicity and glutathione interactions of N-methyldithiocarbamate and N, N-dimethyldithiocarbamate in the rat. Toxicological Sciences. 70(2), 269-280.
Mansou S.A., Mossa A.T., Heikal T.M., 2009. Effects of methomyl on lipid peroxidation and antioxidant enzymes in rat erythrocytes: in vitro studies. Toxicol Ind Health. 25(8), 557-63
Celik A., Mazmanci B., Camlica Y., Askin A., Comelekoglu U., 2003. Cytogenetic effects of lambda-cyhalothrin on Wistar rat bone marrow. Mutat Res Genet Toxicol Environ. 539, 91–97.
Fetoui H., Garoui M., Makni-Ayadi F., Zeghal N., 2008. Oxidative stress induced by lambda-cyhalothrin (LTC) in rat erythrocytes and brain: attenuation by vitamin C. Environ Toxicol Pharmacol. 26, 225–231.
Goel A., Dani V., Dhawan D.K., 2005. Protective effects of zinc on lipid peroxidation, antioxidant enzymes and hepatic histoarchitecture in chlorpyrifos induced toxicity. Chem Biol Interact. 156, 131–140.
Sinha C., Seth K., Islam F., Chaturvedi R.K., Shukla S., Mathur N., Srivastava N., Agrawal A.K., 2006. Behavioral and neurochemical effects induced by pyrethroid-based mosquito repellent exposure in rat offsprings during prenatal and early postnatal period. Neurotoxicology and Teratology. 28(4), 472-481.
Kono Y., Fridovich I., 1982. Superoxide radical inhibits catalase. Journal of Biological Chemistry. 257(10), 5751-5754.
El-Demerdash F.M., 2007. Lambda-cyhalothrin-induced changes in oxidative stress biomarkers in rabbit erythrocytes and alleviation effect of some antioxidants. Toxicology In Vitro. 21(3), 392-397.
Colović M.B., Krstić D.Z., Lazarević-Pašti T.D., Bondžić A.M., Vasić V.M. 2013. Acetylcholinesterase inhibitors: pharmacology and toxicology. Current neuropharmacology. 11(3), 315–335.
Tolosa I., Readman J.W., Mee L.D., 1996. Comparison of the performance of solid-phase extraction techniques in recovering organophosphorus and organochlorine compounds from water. Journal of Chromatography. 725(1), 93-106.
Shaw B.P., Panigrahi A.K., 1990. Brain AChE activity studies in some fish species collected from a mercury contaminated estuary. Water, Air, and Soil Pollution. 53(3), 327-334.
Odland L., Romert L., Clemedson C., Walum E., 1994. Glutathione content, glutathione transferase activity and lipid peroxidation in acrylamide-treated neuroblastoma N1E 115 cells. Toxicol In Vitro. 8, 263–267.
Chatterjea M.N., Shinde R., 2002. Text Book of Medical Biochemistry, 5th ed. Jaypee Brothers, Medical Publishers Ltd., New Delhi. 317.
Afolabi O.K., Aderibigbe F.A., Folarin D.T., Arinola A., Wusu A.D., 2019. Oxidative stress and inflammation following sub-lethal oral exposure of cypermethrin in rats: mitigating potential of epicatechin. Heliyon. 5(8), e02274.
Tekman B., Ozdemir H., Senturk M., Ciftci M., 2008. Purification and characterization of glutathione reductase from rainbow trout (Oncorhynchus mykiss) liver and inhibition effects of metal ions on enzyme activity. Comp Biochem Physiol C Toxicol Pharmacol. 148, 117–121.
Stephen A.O., James O., Ikoojo E.R., Sunday A.O., 2016. Effects of selenium treatment on healing of acetic acid induced gastric ulcer in albino wistar rats. Am J Biomed Res. 4(1), 18-22.
Barrera G., Pizzimenti S., Daga M., Dianzani C., Arcaro A., Cetrangolo G.P., Giordano G., Cucci M.A., Graf M., Gentile F., 2018. Lipid peroxidation-derived aldehydes, 4-hydroxynonenal and malondialdehyde in aging-related disorders. Antioxidants. 7(8), 102.
Vardi N., Parlakpinar H., Ozturk F., Ates B., Gul M., Cetin A., Erdogan A., Otlu A., 2008. Potent protective effect of apricot and β-carotene on methotrexate-induced intestinal oxidative damage in rats. Food and Chemical Toxicology. 46(9), 3015-3022.
Kaviraj A., Unlu E., Gupta A., El Nemr A., 2014. Biomarkers of environmental pollutants. BioMed Research International.
Rezg R., Mornagui B., El-Fazaa S., Gharbi N., 2008. Caffeic acid attenuates malathion induced metabolic disruption in rat liver, involvement of acetylcholinesterase activity. Toxicology. 250, 27-31.
Sarin S., Gill K.D., 1998. Potential biomarkers of dichlorvos induced neuronal injury in rats. Biomarkers. 3(3), 169-176.
Montgomery M.P., Kamel F., Saldana T.M., Alavanja C.R., Sandler D.P., 2008. Incident diabetes and pesticide exposure among licensed pesticide applicators: Agricultural Health Study, 1993-2003. Am J Epidemiol. 167, 1235-1246.
Wang X.P., Xue F.S., Hua A.I., Ge F., 2006. Effects of diapause duration on future reproduction in the cabbage beetle, Colaphellus bowringi: positive or negative? Physiological Entomology. 31(2), 190-196.
Martin J.B., Gusella J.F., 1986. Huntingtons disease. New England Journal of Medicine. 315(20), 1267-1276.
Dawbarn D., DeQuidt M.E., Emson P.C., 1985. Survival of basal ganglia neuropeptide Y-somatostatin neurons in Huntington’s disease. Brain Res. 340, 251–260.
Javed M., Zeeshan M., Zeeshan M., 2015. Review on exposure, absorption and elimination of pyrethroids in humans. Japanese Journal of Applied Entomology and Zoology. 180(35), 180-184.