نگاشتهای 𝛅- همریختی به توی جبرهای باناخ دوگان
محورهای موضوعی : آمار
1 - استادیار گروه ریاضی، دانشکده ریاضی و آمار، دانشگاه ملایر، ملایر، ایران
2 - دانشگاه ملایر، دانشکده ریاضی و آمار، گروه ریاضی
کلید واژه: δ- homomorphism map, Dual Banach agebras, δ-multliplicative functional,
چکیده مقاله :
فرض کنید A یک جبر باناخ و (*_B,B) یک جبر باناخ دوگان باشد. نگاشت خطی φ:A⟶B را یک نگاشت δ-همریختی گوییم هرگاه بازای هر a_1,a_2∈A داشته باشیم ‖φ(a_1 a_2)-φ(a_1)φ(a_2)‖≤δ‖a_1‖ ‖a_2‖ . در این مقاله، به مطالعه ی نگاشتهای δ- همریختی از A به توی B می پردازیم. در بین نتایجی که بدست می آوریم، نشان خواهیم داد، اگر φ:A⟶B نگاشت δ- همریختی باشد و *_B روی زیر جبر تولید شده توسط (φ(A ضربی باشد، آنگاه نگاشت φ کراندار است و φ‖≤1+δ‖.فرض کنید A یک جبر باناخ و (*_B,B) یک جبر باناخ دوگان باشد. نگاشت خطی φ:A⟶B را یک نگاشت δ-همریختی گوییم هرگاه بازای هر a_1,a_2∈A داشته باشیم ‖φ(a_1 a_2)-φ(a_1)φ(a_2)‖≤δ‖a_1‖ ‖a_2‖ . در این مقاله، به مطالعه ی نگاشتهای δ- همریختی از A به توی B می پردازیم. در بین نتایجی که بدست می آوریم، نشان خواهیم داد، اگر φ:A⟶B نگاشت δ- همریختی باشد و *_B روی زیر جبر تولید شده توسط (φ(A ضربی باشد، آنگاه نگاشت φ کراندار است و φ‖≤1+δ‖.
Let A be a Banach algebra and (B,B_*) be a dual Banach algebra. A linear map φ:A⟶B is said to be a δ - homomorphism map if ‖‖φ(a_1 a_2)-φ(a_1)φ(a_2)‖‖≤δ‖‖a_1‖‖ ‖‖a_2 ‖‖ for every a_1,a_2∈A. In this paper, we study the δ - homomorphism maps from A into B. Among other things, we prove that if φ:A⟶B is a δ - homomorphism map and B_* is multiplicative on the algebra generated by φ(A), then φ is bounded and ‖‖φ‖‖≤1+δ. Let A be a Banach algebra and (B,B_*) be a dual Banach algebra. A linear map φ:A⟶B is said to be a δ - homomorphism map if ‖‖φ(a_1 a_2)-φ(a_1)φ(a_2)‖‖≤δ‖‖a_1‖‖ ‖‖a_2 ‖‖ for every a_1,a_2∈A. In this paper, we study the δ - homomorphism maps from A into B. Among other things, we prove that if φ:A⟶B is a δ - homomorphism map and B_* is multiplicative on the algebra generated by φ(A), then φ is bounded and ‖‖φ‖‖≤1+δ.
[1] F. F. Bonsal and J. Duncan, Complete normed algebras, Springer Verlag (1973).
[2] M. Daws, Multipliers, Self-induced and dual Banach algebras, Dissertations Mathematicae 470 (2010), 62 pp.
[3] H. G. Dales, Automatic continuity: a survey, Bulletin of The London Mathematical Society 10 (1987), 129-183.
[4] H. G. Dales, Banach algebras and automatic continuity. Oxford University press (2001).
[5] B. E. Johnson, The uniqueness of the (complete) norm topology, Bulletin of The American Mathematical Society 73 (1967), 537-539.
[6] B. E. Johnson, Continuity of generalized homomorphisms, Bulletin of The London Mathematical Society 19 (1987), 67-71.
[7] B. Hayati and M. Amini, Connes-amenability of multiplier Banach algebras, Kyoto Journal of Mathematics 50 (2010), 41-50.
[8] B. Hayati and M. Amini, Dual multiplier Banach algebras and Connes-amenability, Publications Mathematicae Debrecen 86 (2015), 169-182.
[9] K. Jarosz, Perturbations of Banach algebras, Lectures Notes in Mathematics, 1120 Springer, Berlin (1985).
[10] V. Runde, Lectures on amenability, Lecture Notes in Mathematics, 1774 Springer, Berlin (2002).