نتایج وجودی یک رده مسائل بیضوی مرتبه چهارم با شرایط مرزی رابین
محورهای موضوعی : آمارعطیه رمضان نیا جلالی 1 , قاسم علیزاده افروزی 2
1 - دانشکده علوم ریاضی، دانشگاه مازندران، بابلسر، ایران
2 - دانشکده علوم ریاضی، دانشگاه مازندران، بابلسر، ایران
کلید واژه: Variable exponent Sobolev Space, The fourth-order Operator, Mountain Pass Theorem, Compact embedding,
چکیده مقاله :
در سال های اخیر معادلات دیفرانسیل مرتبه چهارم در فیزیک ریاضیات مورد توجه بسیاری از محققان قرار گرفته است. از جمله این کاربردها می توان به سیستم های مکانیکی میکرو الکترو، نظریه فیلم نازک، انتشار سطح روی جامدات، جریان در سلول های Hele-shaw و سیستم های چندفازی اشاره کرد.[ 9, 20] اهمیت بررسی اینگونه معادلات به دلیل توجیه بسیاری از نمونه های فیزیکی با استفاده از مدلسازی ریاضی می باشد که بیشتر در زمینه مایعات نیوتنی و مکانیک آلاستیک به ویژه مایعات الکتروشناسی (مایعات هوشمند) قابل رویت است. برای جزئیات بیشتر به مقالات [11, 21] مراجعه نمایید.در این مقاله شرایط کافی برای وجود حداقل دو جواب ضعیف برای یک مسئله بیضوی مرتبه چهارم با شرایط مرزی رابین بررسی می شود. تجزیه و تحلیل ما به طور کلی به بحث های تغییراتی مبتنی بر قضیه گذرگاه کوهی و بعضی از نظریه های اخیر بر روی فضای سوبولف-لبگ تعمیم یافته می باشد. نقطه شروع کارمان مقاله [3] می باشد که نویسنده مسئله (1) را با شرایط مرزی نویر بررسی نمود. در این مقاله وجود حداقل دو جواب ضعیف نابدیهی برای مسئله (1) با شرایط مرزی روبین تضمین می شود. به طور دقیق تر ما با به کارگیری قضیه گذرگاه کوهی Ambrosetri و Rabinowitz و تحت شرایط مناسب نشان می دهیم که یک عدد مثبت λ_* وجود دارد به طوری که مسئله (1) دارای حداقل دو جواب ضعیف غیربدیهی است.
In recent years, fourth-order differential equations in mathematical physics have been considered by many researchers. These applications include Micro Electro Mechanical systems, thin film theory, surface diffusion on solids, flow in Hele-Shaw cells and phase field models of multiphase systems.[ 9, 20] The importance of studying such equations is due to the justification of many physical examples using mathematical modeling, which can be seen mostly in the field of Newtonian fluids and elastic mechanics, in particular, electrological fluids (smart liquids). See [11, 21] for more details.In this paper, using variational methods, sufficient conditions for the existence of at least two weak non-trivial solutions of a fourth-order elliptic boundary value problem with the Rubin boundary conditions are investigated. Our analysis mainly relies on the variational arguments based on the mountain pass lemma and some recent theory on the generalized Lebesgue–Sobolev spaces. Our work starting point is the paper "Continuous spectrum of a fourth-order nonhomogenous elliptic equation with variable exponent" by A. Ayoujil, A.R. El Amrouss of [3] where the authors considered the problem (1) with the Navier boundary conditions. This paper's guarantee the exsitence of at least two nontrivial weak solutions for the problem (1) with Robin boundary conditions.More precisely, by applying Ambrosetti and Rabinowitz’s mountain pass theorem and under appropriate conditions, we show that there exists a positive number λ_*such that the problem (1) has at least two nontrivial weak solutions.
[1] G.A. Afouzi, M. Mirzapour, N.T. Chung. Existence and non-existence of solutions for a p(x)-biharmonic problem: Electron. J. Differ. Equ. (2015)
[2] A. Ayoujil, A.R. El Amrouss. On the spectrum of a fourth order elliptic equation with variable exponent: Nonlinear Anal. 71, 4916–4926 (2009)
[3] A. Ayoujil, A.R. El Amrouss. Continuous spectrum of a fourth order nonhomogenous elliptic equation with variable exponent: Electron. J. Differential Equations 24, 12 pp (2011)
[4] A. Ayoujil, A.R. El Amrouss. Multiple solutions for a Robin problem involving the p(x)-biharmonic operator: Mathematics and Computer Science Series, vol 44, 87-93(2017)
[5] A.R. El Amrouss, A. Ourraoui. Existence of solutions for a boundary value problem involving a p(x)-biharmonic operator: Bol. Soc. Paran. Mat. 31,179–192(2013)
[6] M. Badiale, E. Serra. Semilinear elliptic equatuons for beginners: Springer, (2011).
[7] X. Fan, X. Han. Existence and multiplicity of solutions for p(x)-Laplacian equations in : Nonlinear Anal. 59, 173–188(2004)
[8] X. Fan, D. Zhao. On the spaces and : J. Math. Anal. Appl. 263, 424–446(2001)
[9] X.L. Fan, J.S. Shen, D. Zhao. Sobolev embedding theorems for spaces : J. Math. Anal. Appl. 262 ,749-760(2001)
[10] F. Fattahi, M. Alimohammady. Infinitely many solutions for a class of hemivariational inequalities involving p(x)-Laplacian: Analele Universitatii "Ovidius" Constanta - Seria Matematica, Vol. 25(2),65-83(2017)
[11] A. Ferrero, G. Warnault. On a solutions of second and fourth order elliptic with power type nonlinearities: Nonlinear Anal. T.M.A. (70)8, 2889-2902(2009)
[12] K.B. Haddouch, Z. E. Allali, A. Ayoujil and N. Tsouli. Continuous spectrum of a fourth order eigenvalue problem with variable exponent under Neumann boundary conditions: Annals of the University of Craiova, Mathematics and Computer Science Series Volume 42(1), 42-55. (2015)
[13] T. C. Halsey. Electrorheological fluids: Science 258, 761-766(1992)
[14] Y. Jabri. The Mountain Pass Theorem, Variants, Generalizations and some Applications: Encyclopedia of Mathematics and its Applications 95, Cambridge, New York (2003)
[15] K. Kefi. p(x)-Laplacian with indefinite weight: Proc. Amer. Math. Soc. 139, 4351–4360(2011)
[16] L. Kong. Eigenvalues for a fourth order elliptic problem: Proc. Amer. Math. Soc. 143 ,249–258(2015)
[17] L. Kong. Multiple solutions for fourth order elliptic problems with p(x)-biharmonic operators: Opuscula Math. 36, no. 2, 253–264(2016)
[18] L. Kong. On a fourth order elliptic problem with a p(x)-biharmonic operator: Appl. Math. Lett. 27, 21–25(2014)
[19] O. On spaces and : Czechoslovak Math. J. 41 ,592- 618. (1991)
[20] M. Mihalescu, V. Radulesu. A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids: Proc. R. Soc. A 462 ,2625–2641(2006)
[21] M. Mihalescu, V. Radulesu. On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent: Proc. Amer. Math. Soc. 135 ,2929–2937(2007)
[22] T. G Myers. Thin films with high surface tension: SIAM Review, 40 (3) ,441-462(1998)
[23] M. Ruzicka. Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, 1748, Springer-Verlag, Berlin. (2000)