غشاهای مبتنی بر گرافن اکسید با کاربرد در فرایند تصفیه آب
محورهای موضوعی : کاربرد نانوساختارهامیترا مهرابی 1 , فاطمه هنرآسا 2
1 - گروه شیمی، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
2 - گروه شیمی، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
کلید واژه: تصفیه آب, گرافن اکسید, درجه اکسیداسیون, غشا,
چکیده مقاله :
در سال های اخیر گرافن اکسید به دلیل داشتن ویژگی های منحصر بفرد مانند داشتن سطح تماس بالا، خصوصیات مکانیکی خوب، روش های آسان سنتز، وجود گروه های عاملی مختلف بر روی سطح و امکان اصلاح سطح به یکی از جذاب ترین مواد در طراحی و ساخت غشاهای مورد استفاده در فرایندهای تصفیه آب تبدیل شده است. برای ساخت این دسته از غشاها، روش های گوناگونی پیشنهاد شده است که هر یک به نوبه خود دارای معایب و مزایایی هستند. از طرف دیگر با دستکاری در فرایند سنتز و یا اصلاح گرافن اکسید می توان عملکرد این دسته از غشاهای جداسازی را کنترل و تنظیم کرد. در این مقاله ابتدا به بررسی انواع روش های متداول در تهیه غشاهای جداسازی ساخته شده بر مبنای گرافن اکسید پرداخته می شود و در ادامه نحوه ی کنترل و تنظیم عملکرد این دسته از غشاها برای رسیدن به شرایط مطلوب تر در فرایند تصفیه آب بررسی می شود.
In recent years, graphene oxide has become one of the most attractive materials for design and manufacturing of membranes used in water treatment processes. Because graphene oxide shows unique properties, such as a high surface area, good mechanical properties, simple synthesis techniques, presence of various functional groups on its surface and the possibility of surface modification. Various methods have been proposed for preparing graphene oxide membranes, each of which has its own advantages and disadvantages. On the other hand, it is possible to control and adjust the functions and performance of these separation membranes by making changes in the synthesis process or by modifying graphene oxide itself. Here, Firstly, the various common methods for preparing separation membranes based on graphene oxide will be discussed. Then, methods of controlling and adjusting the performance of these membranes to attain more favorable conditions for water treatment processes will be developed.
1. E. Obotey Ezugbe and S. Rathilal, Membranes (Basel) 10, 89 (2020).
2. A. Lee, J. W. Elam, and S. B. Darling, Environ Sci (Camb) 2, 17 (2016).
3. F. Jia, X. Xiao, A. Nashalian, S. Shen, L. Yang, Z. Han, H. Qu, T. Wang, Z. Ye, Z. Zhu, L. Huang, Y. Wang, J. Tang, and J. Chen, Nano Res 15, 6636 (2022).
4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
5. K. S. Novoselov, V. I. Fal′ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, Nature 490, 192 (2012).
6. C. J. Shearer, A. D. Slattery, A. J. Stapleton, J. G. Shapter, and C. T. Gibson, Nanotechnology 27, 125704 (2016).
7. A. Hashmi, V. Nayak, K. R. Singh, B. Jain, M. Baid, F. Alexis, and A. K. Singh, Mater Today Adv 13, 100208 (2022).
8. H. R. Byon, S. W. Lee, S. Chen, P. T. Hammond, and Y. Shao-Horn, Carbon N Y 49, 457 (2011).
9. A. B. Dichiara, T. J. Sherwood, and R. E. Rogers, J Mater Chem A Mater 1, 14480 (2013).
10. S. Park, K.-S. Lee, G. Bozoklu, W. Cai, S. T. Nguyen, and R. S. Ruoff, ACS Nano 2, 572 (2008).
11. G. Shi, Q. Meng, Z. Zhao, H.-C. Kuan, A. Michelmore, and J. Ma, ACS Appl Mater Interfaces 7, 13745 (2015).
12. Y. Liu, IOP Conf Ser Earth Environ Sci 94, 012060 (2017).
13. A. Ricci, A. Cataldi, S. Zara, and M. Gallorini, Materials 15, 2229 (2022).
14. T. M. Magne, T. de Oliveira Vieira, L. M. R. Alencar, F. F. M. Junior, S. Gemini-Piperni, S. V. Carneiro, L. M. U. D. Fechine, R. M. Freire, K. Golokhvast, P. Metrangolo, P. B. A. Fechine, and R. Santos-Oliveira, J Nanostructure Chem 12, 693 (2022).
15. R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, Science 335, 442 (2012).
16. Y. Wei, Y. Zhang, X. Gao, Z. Ma, X. Wang, and C. Gao, Carbon N Y 139, 964 (2018).
17. O. Kwon, Y. Choi, E. Choi, M. Kim, Y. C. Woo, and D. W. Kim, Nanomaterials 11, 757 (2021).
18. Q. Yang, Y. Su, C. Chi, C. T. Cherian, K. Huang, V. G. Kravets, F. C. Wang, J. C. Zhang, A. Pratt, A. N. Grigorenko, F. Guinea, A. K. Geim, and R. R. Nair, Nat Mater 16, 1198 (2017).
19. C.-H. Tsou, Q.-F. An, S.-C. Lo, M. De Guzman, W.-S. Hung, C.-C. Hu, K.-R. Lee, and J.-Y. Lai, J Memb Sci 477, 93 (2015).
20. J. T. Robinson, M. Zalalutdinov, J. W. Baldwin, E. S. Snow, Z. Wei, P. Sheehan, and B. H. Houston, Nano Lett 8, 3441 (2008).
21. Y. Lou, G. Liu, S. Liu, J. Shen, and W. Jin, Appl Surf Sci 307, 631 (2014).
22. D. Frederichi, M. H. N. O. Scaliante, and R. Bergamasco, Environmental Science and Pollution Research 28, 23610 (2021).
23. J. J. Richardson, M. Björnmalm, and F. Caruso, Science 348, (2015).
24. X. Hu, Y. Yu, S. Ren, N. Lin, Y. Wang, and J. Zhou, Journal of Porous Materials 25, 719 (2018).
25. J. Y. Chong, B. Wang, C. Mattevi, and K. Li, J Memb Sci 549, 385 (2018).
26. J. Heo, M. Choi, and J. Hong, Sci Rep 9, 2754 (2019).
27. Y. Zhang, S. Zhang, J. Gao, and T.-S. Chung, J Memb Sci 515, 230 (2016).
28. H. Kang, J. Shi, L. Liu, M. Shan, Z. Xu, N. Li, J. Li, H. Lv, X. Qian, and L. Zhao, Appl Surf Sci 428, 990 (2018).
29. M. Hu and B. Mi, Environ Sci Technol 47, 3715 (2013).
30. S. P. Koenig, L. Wang, J. Pellegrino, and J. S. Bunch, Nat Nanotechnol 7, 728 (2012).
31. A. Lerf, A. Buchsteiner, J. Pieper, S. Schöttl, I. Dekany, T. Szabo, and H. P. Boehm, Journal of Physics and Chemistry of Solids 67, 1106 (2006).
32. Y. Zhang, S. Zhang, and T.-S. Chung, Environ Sci Technol 49, 10235 (2015).
33. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev. 39, 228 (2010).
34. J. Abraham, K. S. Vasu, C. D. Williams, K. Gopinadhan, Y. Su, C. T. Cherian, J. Dix, E. Prestat, S. J. Haigh, I. V. Grigorieva, P. Carbone, A. K. Geim, and R. R. Nair, Nat Nanotechnol 12, 546 (2017).
35. C.-N. Yeh, K. Raidongia, J. Shao, Q.-H. Yang, and J. Huang, Nat Chem 7, 166 (2015).
36. Y.-C. An, X.-X. Gao, W.-L. Jiang, J.-L. Han, Y. Ye, T.-M. Chen, R.-Y. Ren, J.-H. Zhang, B. Liang, Z.-L. Li, A.-J. Wang, and N.-Q. Ren, Environ Res 223, 115409 (2023).
37. Y. Zhao, C. Li, X. Fan, J. Wang, G. Yuan, X. Song, J. Chen, and Z. Li, Appl Surf Sci 384, 279 (2016).
38. J. U. Lee, W. Lee, J. W. Yi, S. S. Yoon, S. B. Lee, B. M. Jung, B. S. Kim, and J. H. Byun, J Mater Chem A Mater 1, 12893 (2013).
39. R. Verdejo, M. M. Bernal, L. J. Romasanta, and M. A. Lopez-Manchado, J. Mater. Chem. 21, 3301 (2011).
40. L. Wang, X. Lu, S. Lei, and Y. Song, J. Mater. Chem. A 2, 4491 (2014).
41. A. B. Dichiara, T. J. Sherwood, J. Benton-Smith, J. C. Wilson, S. J. Weinstein, and R. E. Rogers, Nanoscale 6, 6322 (2014).
42. B. Adhikari, A. Biswas, and A. Banerjee, ACS Appl Mater Interfaces 4, 5472 (2012).
43. Z. Tang, X. Wu, B. Guo, L. Zhang, and D. Jia, J Mater Chem 22, 7492 (2012).
44. L.-C. Tang, X. Wang, L.-X. Gong, K. Peng, L. Zhao, Q. Chen, L.-B. Wu, J.-X. Jiang, and G.-Q. Lai, Compos Sci Technol 91, 63 (2014).
45. H. Liu, H. Wang, and X. Zhang, Advanced Materials 27, 249 (2015).
46. L. Qiu, X. Zhang, W. Yang, Y. Wang, G. P. Simon, and D. Li, Chemical Communications 47, 5810 (2011).
47. L. Chen, G. Shi, J. Shen, B. Peng, B. Zhang, Y. Wang, F. Bian, J. Wang, D. Li, Z. Qian, G. Xu, G. Liu, J. Zeng, L. Zhang, Y. Yang, G. Zhou, M. Wu, W. Jin, J. Li, and H. Fang, Nature 550, 380 (2017).
48. M. İlhan, H. E. Gültekin, S. Rençber, Z. Şenyiğit, and H. H. Aydın, in Systems of Nanovesicular Drug Delivery (Elsevier, 2022), pp. 191–206.
49. A. Parupudi, S. H. R. Mulagapati, and J. A. Subramony, in Nanoparticle Therapeutics (Elsevier, 2022), pp. 3–46.
50. Q. Liu, J. Li, Z. Zhou, J. Xie, and J. Y. Lee, Sci Rep 6, 19593 (2016).
51. P. Luis, in Fundamental Modelling of Membrane Systems (Elsevier, 2018), pp. 1–23.
52. J. Dharan M.P, H. P.V., and P. K.S, Mater. Today Proc. (2023) doi.org/10.1016/j.matpr.2023.01.074