In-vitro antioxidant capacity and hepato-protective potential of Blighia sapida stem bark ether fractions in STZ induced diabetes rats
الموضوعات : مجله گیاهان داروییدامیلولا اوموبوا 1 , امانوئل آکینتیمین 2 , سلمنت آکینوبی 3 , توهیب بالگون 4
1 - گروه بیوشیمی ، دانشکده علوم ، دانشگاه Adekunle Ajasin ، Akungba Akoko ، نیجریه
2 - گروه علوم شیمی ، دانشگاه اولوسگون آگاگو ، اوکیتیپوپا ، ایالت اوندو ، نیجریه
3 - گروه علوم شیمی ، دانشگاه اولوسگون آگاگو ، اوکیتیپوپا ، ایالت اوندو ، نیجریه
4 - گروه بیوشیمی ، دانشکده علوم ، دانشگاه Adekunle Ajasin ، Akungba Akoko ، نیجریه
الکلمات المفتاحية: liver, Antioxidant, Diabetes, Steptozotocin, Transaminases, Ether,
ملخص المقالة :
Background & Aim:Diabetes mellitus is a metabolic disease that affects all systems in the body, including the liver. This study evaluated the in-vitro antioxidant capacity and liver function status of STZ-induced diabetic rats treated with petroleum and diethyl ether fractions of Blighia sapida stem barkfor 14 days. Experimental: The antioxidant ability of the petroleum and diethyl ether fraction of Blighia sapida stem bark was evaluated by total flavonoids and phenolic content (TFC and TPC) and DPPH scavenging activity using standard protocol. Thirty-five rats in seven groups were used. Plasma transaminases (ALT and AST) activities and bilirubin level was determined using standard procedure. Results: The TFC and TPC of petroleum ether fraction of B. sapida (PEFBS) (47.16 mg QUE/100g and 39.87 mg GAE/100g) was observed to be higher compared to diethyl ether fraction of B. sapida (DEFBS) (37.44 mg QUE/100 g and 36.74 mg/GAE/100g). The DPPH scavenging activity of the fractions were significantly (P < 0.05) reduced across the concentrations compared to the standard (gallic acid). STZ induced diabetes rats administered 2 ml/kg b. w. of normal saline significantly (p < 0.05) increased plasma ALT, AST activities and bilirubin level compared to the normal control rats while treatment of diabetic rats with petroleum and diethyl ether fraction of B. sapida at both dosesreduced the activities of these enzymes and level of bilirubin. Recommended applications/industries: The results sustain the fact that, the fractions of B. sapida have an immense potential to be developed further into a therapeutic agent.
Ainsworth, E.A. and Gillespie, K.M. 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using folin ciocalteu reagent. Nature Protocol, 2(4): 875-877.
Akintayo, E.T., Adebayo, E.A. and Arogundade, L.A. 2002. Chemical composition andphysicochemical and functional properties of akee Blighia sapida pulp and seed flours. Food Chemistry, 77: 333–336.
Al-Omar, M.A., Beedham, C. and Alsara, J.A. 2004. Pathological roles of reactive oxygen species and their defence mechanisms. Saudi Pharmaceutical Journal, 12(1): 1-18.
Avwioro, O.G. 2010. histochemistry and tissue pathology, principle and techniques, Claverianum press, Nigeria.
Bonnefont-Rousselot, D., Bastard, J.P., Jaudon, M.C. and Delattre, J. 2000. Consequences of diabetic status on the oxidant/antioxidant balance. Diabetes Metabolism, 26: 163-176.
Eseyin, O.A., Sattar, M.A., Rathore, H.A., Aigbe, F., Afzal, S., Ahmad, A., Lazhari, M. and Akthar, S. 2018. G-MS and HPLC profiles of phenolic fractions of the leaf of Telfairia occidentalis, Pakistan Journal of Pharmaceutical Science, 31(1): 45-50.
Jaeschke, H., Gores, G.J., Cederbaum, A.I., Hinson, J.A., Pessayre, D. and Lemasters, J.J. 2002. Mechanisms of hepatotoxicity. Toxicological Science, 65: 166-176.
Jendrassik, L. and Grof, P. 1938. Vereinfachte Photome Trische Methoden zur Bestimmung des Blubilirubins. Biochemische Zeitschrift, 297: 81-89.
Karadag, A., Ozcelik, B., and Saner, S. 2009. Review of methods to determine antioxidant capacities. Food Analytical Methods, 2(1): 41-60.
Kazeem, M.I., Ogungbe, S.M., Saibu, G.M. and Aboyade, O.M. 2014. In vitro study on the hypoglycaemic potential of Nicotiana tabacum leaf extracts. Bangladesh Journal of Pharmacology. 9(2):140-145.
National Institute of Health, NIH. 1985. Guide for the care and use of Laboratory Animals U.S. Department of Health Education and welfare.
Njamen, D., Nkeh-Chungag, B.N., Tsala, E., Fomum, Z.T., Mbanya, J.C. and Ngufor, J.F. 2012. Effect of Bridelia ferruginea (Euphorbiaceae) Leaf Extract on Sucrose-induced Glucose Intolerance in Rats. Tropical Journal of Pharmaceutical Research, 11(5): 759-765.
Ojo, O.A., Ojo, A.B., Ajiboye, B.O., Oyinloye, B.E., Imiere, O. and Adeyonu, O. 2017. Ameliorative potentials of Blighia sapida K.D. Koenig bark against pancreatic-cell dysfunction in alloxan-induced diabetic rats. Journal of Complementary and Integrative Medicine, 14(3) Article number 20160145 doi: https://doi. org/10.1515/jcim-2016-0145.
Omoboyowa, D.A., Aja, O.A., Vining-Ogu, I.C. and Alum, A.A. 2017. Anti-hyperglycemic activity of methanol seed extract of Dioclear reflexa in alloxan-induced diabetic Rats. Nigerian Journal of Biochemistry and Molecular Biology, 32(1): 32-43.
Omoboyowa, D.A., Igara, E.C., OtuChristian, G. and Olugu. K.D. 2016. Anti-diabetic activity of methanolic extract of seed cotyledon of Chrysophyllum albidum in alloxan-induced diabetic rats. Biokemistri, 28(2): 88-95.
Omonkhua, A.A., Adebayo, E.A., Saliu, J.A., Ogunwa, T.H. and Adeyelu, T.T. 2014. Liver function of Streptozotocin- induced diabetic rats orally administered aqueous root-bark extracts of Tetrapleura tetraptera (Taub). Nigerian Journal of Basic and Applied Science, 22(3&4): 99-106.
Park, Y.S., Jung, S.T., Kang, S.G., Heo, B.K., Arancibia-Avila, P., Toledo, F. and Gorinstein, S. 2008. Antioxidants and proteins in ethylene-treated kiwifruits. Food Chemistry, 107(2): 640–648.
Reitman, S. and Frankel, S. 1957. A colorimetric method for determination of serum glutamate oxaloacetate and glutamate pyruvate transaminases. American Journal of Clinical Patholoy, 28: 56-63.
Robertson, R.P. 2004. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes, Journal of Biology and Chemistry, 279: 42351–42354.
Romagnoli, M., Gomez-Cabrera, M.C., Perrelli, M.G., Biasi, F., Pallardó, F.V. and Sastre, J. 2010. Xanthine oxidase-induced oxidative stress causes activation of NF-kappaB and inflammation in the liver of type I diabetic rats. Free Radical Biology Medicine, 49: 171–177.
Saeed, M.K., Deng, Y. and Dai, R. 2008. Attenuation of biochemical parameters in streptozotocin-induced diabetes rats by oral administration of extracts and fractions of Cephalotaxus sinensisi. Journal of Clinical Biochemistry and Nutrition, 42: 21–28.
Saidu. A.N., Mann, A. and Onuegbu, C.D. 2012. Phytochemical Screening and of Aqueous Blighia sapida Root Bark Extract on Normoglycemic Albino Rats. British Journal of Pharmaceutical Research, 2(2):89-97.
Shahidi, F., Janitha, P.K. and Wanasundara, P.D. 1992. Phenolic antioxidants. Critical Reviews of Food Science and Nutrition, 32(1): 67–103.
Zafar, M., Naqvi, S.N., Ahmed, M. and Kaimkhani, Z.A. 2009. Altered liver morphology and enzymes in Streptozotocin induced diabetic rats. International Journal of Morphology, 27(3): 719-725