Lump Kinetic Method in Solving Kinetic Problems and Cracking Reaction Mechanism: A Review
الموضوعات :
Iranian Journal of Catalysis
hasanudin Hasanudin
1
,
Wan Asri
2
,
Karna Wijaya
3
1 - Biofuel Research Group, Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Sriwijaya, Inderalaya 30662, South Sumatra, Indonesia
2 - Biofuel Research Group, Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Sriwijaya, Inderalaya 30662, South Sumatra, Indonesia
3 - Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
تاريخ الإرسال : 06 الأربعاء , شعبان, 1443
تاريخ التأكيد : 11 الخميس , شوال, 1443
تاريخ الإصدار : 02 الأربعاء , ذو القعدة, 1443
الکلمات المفتاحية:
Kinetic modeling,
cracking mechanism,
complex reaction,
lumping method,
ملخص المقالة :
The development of an appropriate kinetic model for cracking reactions is essential for simulation and process optimization. These results are to be potentially used for proper reactor design. The complexities of oil gas inlet combinations have led to an increase in the challenges while defining and depicting kinetics on an intrinsic scale. Hence, complicated chemical reaction circumstances are characterized by combining many possible pathways into more modest groups of comparable chemical substances. In addition, cracking kinetic demonstrations is frequently carried out in lumped forms. This is due to the complex nature of the feedstock, which is known to contain enormous hydrocarbon associated with series and parallel reaction networks. The representation of complicated compounds by consolidating a large chemical component into small amounts of apparent components has been generally utilized in industry to generate a straightforward approach to stoichiometry, thermodynamics, and kinetics. Considering the importance of this lumped method, this study focused on studying the development of a kinetic lump approach to solve kinetic problems and cracking mechanisms.
المصادر:
G. Coxson, K.B. Bischoff, Ind. Eng. Chem. Res. 26 (1987) 1239–1248.
Pitault, D. Nevicato, M. Forissier, J.R. Bernard, Chem. Eng. Sci. 49 (1994) 4249–4262.
W. Weekman Jr, D. M. Nace, AIChE J. 16 (1970) 397–404.
A.A. Twaiq, A.R. Mohamad, S. Bhatia, Fuel Process. Technol. 85 (2004) 1283–1300.
Yared, H. Kurniawan, N. Wibisono, Y. Sudaryanto, H. Hindarso, S. Ismadji, ARPN J. Eng. Appl. Sci. 3 (2008) 55–61.
Corma, B.W. Wojciechowski, Catal. Rev. 27 (1985) 29–150.
Ancheyta, R. Sotelo, J. Mex. Chem. Soc. 46 (2002) 38–42.
C. Yen, R.E. Wrench, A.S. Ong, Oil Gas J. 86 (1988) 67-70.
A. Sedran, Catal. Rev. 36 (1994) 405–431.
Gianetto, H.I. Farag, A.P. Blasetti, H.I. de Lasa, Ind. Eng. Chem. Res. 33 (1994) 3053–3062.
Takatsuka, S. Sato, Y. Morimoto, H. Hashimoto, Int. Chem. Eng 27 (1987) 107–116.
Ch, S. Sinha, Pet. Coal 51 (2009) 193-195.
K.G Singh, S. Yusup, A.T. Quitain, B. Abdullah, A. Inayat, M. Ameen, K.W. Cheah, M. Sasaki, T. Kida, Y.H. Chai, Renew. Energy 171 (2021) 1445–1453.
F. Froment, Catal. Rev. - Sci. Eng. 47 (2005) 83–124.
M. Bollas, A.A. Lappas, D.K. Iatridis, I.A. Vasalos, Catal. Today 127 (2007) 31–43.
R. Ayasse, H. Nagaishi, E.W. Chan, M.R. Gray, Fuel 76 (1997) 1025–1033.
W. Wojciechowski, Can. J. Chem. Eng. 46 (1968) 48–52.
A. Callejas, M.T. Martínez, Ind. Eng. Chem. Res. 38 (1999) 3285–3289.
Cristina, Procedia Eng. 100 (2015) 602–608.
Wu, Y. Cheng, Y. Jin, Ind. Eng. Chem. Res. 48 (2009) 12–26.
Khongprom, S. Ratchasombat, W. Wanchan, P. Bumphenkiattikul, S. Limtrakul, RSC Adv. 10 (2020) 2897–2914.
R. Hernández-Barajas, R. Vázquez-Román, M.G. Félix-Flores, Fuel 88 (2009) 169–178.
Hasanudin, A. Rachmat, M. Said, K. Wijaya, Period. Polytech. Chem. Eng. 64 (2019) 238–247.
F. Meier, V.R. Wiggers, G.R. Zonta, D.R. Scharf, E.L. Simionatto, L. Ender, Fuel 144 (2015) 50–59.
Periyasamy, Fuel 158 (2015) 479–487.
Schubert, A. Lechleitner, M. Lehner, W. Hofer, Fuel 262 (2020) 116597.
Sadighi, A. Ahmad, M. Rashidzadeh, Korean J. Chem. Eng. 27 (2010) 1099–1108.
Ancheyta-Juárez, F. López-Isunza, E. Aguilar-Rodríguez, Appl. Catal. A Gen. 177 (1999) 227–235.
Guerra, R. Symonds, S. Bryson, C. Kirney, B. Di Bacco, A. Macchi, R. Hughes, Ind. Eng. Chem. Res. 58 (2019) 16417–16430.
Van Landeghem, D. Nevicato, I. Pitault, M. Forissier, P. Turlier, C. Derouin, J.R. Bernard, Appl. Catal. A Gen. 138 (1996) 381–405.
Ancheyta-Juárez, R. Sotelo-Boyás, Energy and Fuels 14 (2000) 1226–1231.
Sertić-Bionda, Z. Gomzi, M. Mužic, Chem. Eng. Commun. 197 (2009) 275–288.
Quintana-Solórzano, A. Rodríguez-Hernández, R. García-de-León, Ind. Eng. Chem. Res. 48 (2009) 1163–1171.
Al-Sabawi, J.A. Atias, H. De Lasa, Ind. Eng. Chem. Res. 45 (2006) 1583–1593.
Zheng, Q. Tang, T. Wang, J. Wang, Energy and Fuels 29 (2015) 1729–1734.
J. Mu, H. Su, W. Li, J. Chu, J. Chem. Eng. Chinese Univ. 19 (2005) 630.
Zhang, Z. Wang, Y. Jin, Z. Li, W. Yi, Chem. Eng. Res. Des. 119 (2017) 188–197.
M. John, M.A. Mustafa, R. Patel, I.M. Mujtaba, Fuel 235 (2019) 1436–1454.
A. Souza, J.V.C. Vargas, J.C. Ordonez, W.P. Martignoni, O.F. Von Meien, Int. J. Heat Mass Transf. 54 (2011) 1187–1197.
P. Du, Q. Yang, H. Zhao, C.H. Yang, Appl. Petrochemical Res. 4 (2014) 423–433.
Sadighi, A. Ahmad, A. Irandoukht, J. Chem. Eng. Japan 43 (2010) 174–185.
Xiong, C. Lu, Z. Wang, X. Gao, Fuel 142 (2015) 65–72.
G. Xu, H.Y. Su, S.J. Mu, J. Chu, J. Zhejiang Univ. Sci. 7 (2006) 1932–1941.
L. Wang, G. Wang, B.J. Shen, C.M. Xu, J. Sen Gao, Ind. Eng. Chem. Res. 50 (2011) 12501–12511.
Sheng, G. Wang, Q. Zhang, C. Gao, A. Ren, M. Duan, J. Gao, Energy and Fuels 31 (2017) 5037–5045.
A. Olafadehan, O.P. Sunmola, A. Jaiyeola, V. Efeovbokhan, O.G. Abatan, Appl. Petrochemical Res. 8 (2018) 219–237.
Gao, G. Wang, C. Xu, J. Gao, Energy and Fuels 28 (2014) 6554–6562.
Jiang, S. Huang, Energy and Fuels 30 (2016) 10770–10776.
Wang, B. Yang, Z. Wang, Chem. Eng. J. 109 (2005) 1–9.
G. Sani, H.A. Ebrahim, M.J. Azarhoosh, Fuel 225 (2018) 322–335.
Zhang, L. Li, Z. Liu, X. Meng, Int. J. Chem. Eng. 2016 (2016) 9148925.
A. Ebrahimi, H. Mousavi, H. Bayesteh, J. Towfighi, Fuel 231 (2018) 118–125.
You, Energy Sources, Part A Recover. Util. Environ. Eff. 36 (2014) 54–63.
M. Arandes, I. Abajo, J. Bilbao, J. Aokziti, H.I. De Lasa, Chem. Eng. Commun. 190 (2003) 254–284.
Y. Du, Q. Yang, C. Zhang, C. Yang, Appl. Petrochemical Res. 5 (2015) 297–303.