Sucrose catalyzes synthesis of 2-amino-4H-chromene: Insight to the kinetics
الموضوعات : Iranian Journal of CatalysisSayeydmosatfa Habibi-Khorassani 1 , Malek Taher Maghsoodlou 2 , Mehdi Shahraki 3 , Mohammad Ali Poorshamsoddin 4 , Mahsa Karima 5 , Maliheh Abbasi 6
1 - Department of Chemistry
Faculty of Science
University of Sistan and Baluchestan
Zahedan, Iran
P.O. Box: 98135-674
2 - Department of Chemistry
Faculty of Science
University of Sistan and Baluchestan
Zahedan, Iran
P.O. Box: 98135-674
3 - Department of Chemistry
Faculty of Science
University of Sistan and Baluchestan
Zahedan, Iran
P.O. Box: 98135-674
4 - Department of Chemistry
Faculty of Science
University of Sistan and Baluchestan
Zahedan, Iran
P.O. Box: 98135-674
5 - Department of Chemistry
Faculty of Science
University of Sistan and Baluchestan
Zahedan, Iran
P.O. Box: 98135-674
6 - Department of Chemistry
Faculty of Science
University of Sistan and Baluchestan
Zahedan, Iran
P.O. Box: 98135-674
الکلمات المفتاحية: Catalyst, Kinetics, Mechanism, Chromene derivatives, sucrose,
ملخص المقالة :
Sucrose is applied as an efficient catalyst for the three-component reaction consisting of aromatic aldehydes, malononitrile and resorcinol in a mixture of water and ethanol media as green solvents. The advantages of this method are excellent yeild, inexpensive catalyst and more environmentally friendly. Mechanistic insight into the synthesis of 2-amino-4H-chromene included spectral kinetics approaches is revealed. From the temperature, concentration and solvent studies, the activation energy (Ea=102 kJmol-1) and the related kinetic parameters (ΔGǂ=41 kJmol-1, ΔSǂ=195 Jmol-1 and ΔHǂ=99 kJ mol-1) are calculated. The first step of proposed mechanism is recognized as a rate-determining step (k1) and this is confirmed based upon the steady-state approximation.
[1] Q. Ren, W.Y. Siau, Z. Du, K. Zhang, J. Wang, Chem. Eur. J. 17 (2011) 7781–7785.
[2] M.R. Naimi-Jamal, S. Mashkouri, A. Sharifi, Mol. Diversity 14 (2010) 473-477.
[3] R.R. Kumar, S. Perumal, P. Senthilkumar, P. Yogeeswari, D. Sriram, Bioorg. Med. Chem. Lett. 17 (2007) 6459-6462.
[4] V.A. Osyanin, D.V. Osipov, Y. N. Klimochkin, Tetrahedron. 68 (2012) 5612-5618.
[5] W.O. Foye, Principi Di Chemico Farmaceutica, Piccin Padova, Italy, 1991, p. 416.
[6] P. Valenti, A. Bisi, A. Rampa, F. Belluti, S. Gobbi, A. Zampiron, M. Carrara, Bioorg. Med. Chem. 8 (2000) 239-246.
[7] S.M. Kupchan, Y. Komoda, W.A. Court, G.J. Thomas, R.M. Smith, A. Karim, C.J. Gilmore, R.C. Haltivanger, R.F. Bryan, J. Am. Chem. Soc. 94 (1972) 1354-1356.
[8] M.M. Heravi, B. Baghernejad, H.A. Oskooie, J. Chin. Chem. Soc. 55 (2008) 659-662.
[9] W. Kemnitzer, S. Kasibhatla, S. Jiang, H. Zhang, J. Zhao, S. Jia, L. Xu, C.C. Grundy, R. Denis, N. Barriault, L. Vaillancourt, S. Charron, J. Dodd, G. Attardo, D. Labrecque, S. Lamothe, H. Gourdeau, B. Tseng, J. Drewe, S.X. Cai, Bioorg. Med. Chem. Lett. 15 (2005) 4745-4751.
[10] W. Kemnitzer, J. Drewe, S. Jiang, H. Zhang, Y. Wang, J. Zhao, S. Jia, J. Herich, D. Labreque, R. Storer, K. Meerovitch, D. Bouffard, R. Rej, R. Denis, C. Blais, S. Lamothe, G. Attardo, H. Gourdeau, B. Tseng, S. Kasibhatla, S.X. Cai, J. Med. Chem. 47 (2004) 6299-6310.
[11] V.D. Dyachenko, A.N. Chernega, Russ. J. Org .Chem. 42 (2006) 567-576.
[12] R. Ballini, G. Bosica, M.L. Conforti, R. Maggi, A. Mazzacanni, P. Righi, G. Sartori, Tetrahedron 57 (2001) 1395-1398.
[13] D.Q. Shi, S. Zhang, Q.Y. Zhuang, S.J. Tu, H.W. Hu, Chin. J. Org. Chem. 23 (2003). 809-812.
[14] M. Kidwai, S. Saxena, M.K. Rahman Khan, S.S. Thukral, Bioorg. Med. Chem. Lett. 15 (2005) 4295-4289.
[15] S. Makarem, A.A Mohammadi, A.R. Fakhari, Tetrahedron Lett. 49 (2008) 7194-7196.
[16] D.S. Raghuvanshi, K.N. Singh, Arkivoc 10 (2010) 305–317.
[17] S. Makarem, A.A. Mohammadi, A.R. Fakhari, Tetrahedron Lett. 49 (2008) 7194–7196.
[18] J. Safari, Z. Zarnegar, M. Heydarian, J. Taibah Univ. Sci. 7 (2013) 17–25.
[19] M.T. Maghsoodlou, I. Yavari, F. Nassiri, H. Dajhanian, Z. Razmjoo, Monatsh. Chem. 134 (2003) 1585-1591.
[20] G. Marandi, M.T. Maghsoodlou, N. Hazeri, S.M. Habibi-Khorassani, N. Akbarzadeh-Torbati, F. Rostami-Charati, B.W. Skelton, M. Makha, Mol. Diversity 15 (2011) 197-201.
[21] S.S. Sajadikhah, M.T. Maghsoodlou, N. Hazeri, S.M. Habibi-Khorassani, Lett. Org. Chem. 8 (2011) 743-748.
[22] S.M. Habibi-Khorassani, A. Ebrahimi, M. Maghsoodlou, O. Asheri, M. Shahraki, N. Akbarzadeh, Y. Ghalandarzehi, Int. J. Chem. Kinet. 45 (2013) 596-612.
[23] S.M. Habibi-Khorasani, M.T. Maghsoodlou, A. Ebrahimi, F. Farahani-Vasheghani, E. Mosaddeg, M.A. Kazemain, Tetrahedron Lett. 50 (2009) 3621-3624.
[24] S.M. Habibi-Khorassani, A. Ebrahimi, M.T. Maghsoodlou, M. Zakarianezhad, H. Ghasempour, Z. Ghahghayi, Current Org. Chem. 15 (2011) 942-952.
[25] L. M. Schwartz, R. I. Gelb, Anal. Chem. 50 (1978) 1592-1594.
[26] G. Lente, I. Fabian, A.J. Poe, New J. Chem. 29 (2005) 759-760.
[27] J.H. Espenson, In chemical kinetics and mechanisms, second Ed., McGraw-Hill, New York, 1995.
[28] A. J. Poe. Mechanisms of Inorganic and Organometallic Reaction, Plenum Prss, New York, 1994.