Fe3O4/FDU-12: A highly efficient and magnetically separable nano-catalyst for oxidation of alcohols
الموضوعات : Iranian Journal of CatalysisNajme Kalvari Janaki 1 , Razieh Fazaeli 2 , Hamid Aliyan 3
1 - Department of Chemistry, Shahreza Branch, Islamic Azad University, 86145-311, Iran.
2 - Department of Chemistry, Shahreza Branch, Islamic Azad University, 86145-311, Iran.
3 - Department of Chemistry, Shahreza Branch, Islamic Azad University, 86145-311, Iran.
الکلمات المفتاحية: Nanocomposite, Heterogeneous catalysis, Mesoporous FDU-12, Fe3O4 NP,
ملخص المقالة :
A series of Fe3O4 supported on mesoporous FDU-12 silica systems were prepared by the hydrothermal conditions. The surface properties of the functionalized catalyst were analyzed by a series of characterization techniques like FTIR, XRD, N2 adsorption–desorption and TEM. XRD and adsorption–desorption analysis shows that the mesostructure of FDU silica remains intact after Fe3O4 modifications, while spectral technique show the successful immobilizing of the neat Fe3O4 inside the porous silica support. Fe3O4/FDU-12 system, has emerged as highly efficient and magnetically recoverable heterogeneous catalyst for selective oxidation of alcohols with H2O2 at reflux conditions because of its high specific surface area, tuneable pore size, and unique structure. The advantages of this catalytic system is mild reaction conditions, short reaction times, high product yields, easy preparation of the catalysts, non-toxicity of the catalysts, simple and clean work-up of the desired products. The wet catalyst can be removed easily, recovered and reused without significant loss of activity.
[1] T. Yanagisawa, T. Shimizu, K. Kuroda, Bull. Chem. Soc. Jpn. 63 (1990) 988–992.
[2] C.T. Kresge, M.E. Leonowicz, W.J. Roth, Nature 359 (1992) 710–712.
[3] J.S. Beck, J.C. Vartuli, W.J. Roth, J. Am. Chem. Soc. 114 (1992) 10834–10843.
[4] A. Monnier, F. Schuth, Q. Huo, Science 261 (1993) 1299–1303.
[5] D.Y. Zhao, J.L. Feng, Q.S. Huo, Science 279 (1998) 548–552.
[6] D.Y. Zhao, Q.S. Huo, J.L. Feng, J. Am. Chem .Soc. 120 (1998) 6024–6036.
[7] Y. Sakamoto, M. Kaneda, O. Terasaki, Nature 408 (2000) 449–453.
[8] P.I. Ravikovitch, A.V. Neimark, Langmuir 18 (2002) 9830–9837.
[9] F. Kleitz, S.H. Choi, R. Ryoo, R. Chem. Commun. (2003) 2136–2137.
[10] J. Fan, C.Z. Yu, T. Gao, T. Angew. Chem. Int. Ed. 42 (2003) 3146–3150.
[11] J. Fan, C.Z. Yu, J. Lei, J. Am. Chem. Soc. 127 (2005) 10794–10795.
[12] R.K. Dey, F.J.V.E. Oliveira, C. Airoldi, Colloid Surf. A 324 (2008) 41–46.
[13] X. Feng, G.E. Fryxell, L.O. Wang, A.Y. Kim, J. Liu, K.M. Kemner, Science 276 (1997) 923–926.
[14] M.H. Lim, A. Stein, Chem. Mater. 11 (1999) 3285–3295.
[15] D.Y. Zhao, Q.S. Huo, J.L. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120 (1998) 6024–6036.
[16] Y. Sakamoto, M. Kaneda, O. Terasaki, D.Y. Zhao, J.M. Kim, G. Stucky, H.J. Shim, R. Ryoo, Nature 408 (2000) 449–53.
[17] J. Fan, C.Z. Yu, T. Gao, J. Lei, B.Z. Tian, L.M. Wang, Q. Luo, B. Tu,. W.Z. Zhou, D.Y. Zhao, Angew. Chem. Int. Ed. 42 (2003) 3146–3150.
[18] J. Fan, C.Z. Yu, J. Lei, Q. Zhang, T.C. Li, B. Tu, W.Z. Zhou, D.Y. Zhao, J. Am. Chem. Soc. 127 (2005) 10794–10795.
[19] W. Wu, X.H. Xiao, S.F. Zhang, H. Li X.D. Zhou, C.Z. Jiang, Res. Lett. 4 (2009) 926.
[20] M. Faraji, Y. Yamini, M. Rezaee, J. Iran Chem. Soc. 7 (2010) 1-37.
[21] P. Landon, J. Ferguson, B.E. Solsona, T. Garcia, S. Al-Sayari, A.F. Carley, A.A. Herzing, C.J. Kiely, M. Makkee , J.A. Moulijn, A. Overweg, S.E. Golunski, G.J. Hutchings, J. Mater. Chem. 16 (2006) 199-208.
[22] Y. Wang, Y.M. Wang, J.L. Cao, F.H. Kong , H.J. Xia , J. Zhang, B.L. Zhu, S.R. Wang, S.H. Wu, Sensors Actuat. B: Chem. 131 (2008) 183-189.
[23] Z. Zhong, J. Ho, J. Teo, S. Shen, S.A. Gedanken, Chem. Mater. 19 (2007) 4776-4782.
[24] U.I. Tromsdorf, N.C. Bigall, M.G. Kaul, O.T. Bruns, M.S. Nikolic, B. Mollwitz, R.A. Sperling, R. Reimer, H. Hohenberg, W.J. Parak, S. Forster, U. Beisiegel, G. Adam, H. Weller, Nano Lett. 7 (2007) 2422-2427.
[25] L. Levy, Y. Sahoo, K. S. Kim, E.J. Bergey, P.N. Prasad, Chem. Mater. 14 (2002) 3715-3721.
[26] R. Arundhathi, D. Damodara, P.R. Likhar, M.L. Kantam, P. Saravanan, T. Magdaleno, S.H. Kwon, Adv. Synth. Catal. 353 (2011) 1591–1600.
[27] P.J. Robinson, P. Dunnill, M.D. Lilly, Biotechnol. Bioeng. 15 (1973) 603-606.
[28] H. Li, F. Zhang, H. Yin, Y. Wan, Y. Lu, Green Chem. 9 (2007) 500–505.
[29] M. Kruk, C.M. Hui, Microporous Mesoporous Mater. 114 (2008) 64–73.
[30] L.Wang, J. Li, Y. Lv, G. Zhao, S. Gao, Appl. Organometal. Chem. 26 (2012) 37–43.
[31] S. Xie, H. Tsunoyama, W. Kurashige, Y. Negishi, T. Tsukuda, ACS Catal. 2 (2012) 1519−1523.
[32] B. Karimi, A. Zamani, S. Abedi, J. H. Clark, Green Chem. 11 (2009)109–119.
[33] G. Giachi, M. Frediani, W. Oberhauser, E. Passaglia, J. Polymer Sci. A: Polymer Chem. 50 (2012) 2725–2731.
[34] Y. Makita, T. Fujita, T. Danno, M. Inoue, M. Ueshima, S.-I. Fujiwara, A. Ogawa, Supramolecular Catal. (2012) 9-11.
[35] N. Asao, N. Hatakeyam, M., T. Minato, E. Ito, M. Hara, Y. Kim, Y. Yamamoto, M. Chen, W. Zhangi, A. Inouei, Chem. Commun. 48 (2012) 4540–4542.
[36] Y. He, X. Ma, M. Lu, ARKIVOC VIII (2012) 187-197.