Photocatalytic degradation of methyl orange using ZnO and Fe doped ZnO: A comparative study
الموضوعات : Iranian Journal of CatalysisKalpesh Anil Isai 1 , Vinod Shankar Shrivatava 2
1 - Department of Applied Sciences and Humanities, R.C. Patel Institute of Technology, Shirpur, (M.S.) India.
2 - Nano chemistry Research Laboratory, G. T. Patil College, Nandurbar, (M.S.) India.
الکلمات المفتاحية: ZnO, MO, Photocatalytic Degradation, Nanomaterial, Fe doped ZnO,
ملخص المقالة :
ZnO and 2% Fe doped ZnO photocatalytic nanomaterials were successfully synthesized by successive ionic layer adsorption and the reaction (SILAR) method. The characterizations of these nanomaterials were carried out using XRD, SEM and EDX techniques. XRD study shows that the samples have a hexagonal wurtzite crystalstructure, size of which is in the range 21-23 nm. SEM shows nanoflakes or nano flower-like morphology, while EDX reveals the compositional analysis. In this paper, we investigated photocatalytic degradation of an aqueous suspension of methyl orange (MO) dye as a model pollutant. Degradation of dye was monitored by the spectrophotometric method. The effects of various parameters such as pH, contact time, initial dye concentration and catalyst dose were studied. in optimized process, the maximum degradation obtained using ZnO was 88 % and that using Fe doped ZnO was 94 % at a pH value of 8. We have concluded that, compared to ZnO, the 2% Fe doped ZnO is a promising photocatalyst for degradation of MO.
[1] D. Ayodhya, G. Veerabhadram, Mater. Today Energy 9 (2018) 83-113.
[2] L. Shabani, H. Aliyan, Iran. J. Catal. 6 (2016) 221-228.
[3] A. Buthiyappan, A. Raman Abdul Aziz, W. Mohd Ashri, W. Daud, Rev. Chem. Eng. 32 (2016) 1–47.
[4] M. Shahid, S. Islam, F. Mohammad, J. Clean. Prod. 53 (2013) 310-331.
[5] H.Y. Zhu, R. Jiang, Y.Q. Fu, Y.J. Guan, J. Yao, L. Xiao, Desalination 286 (2012) 41-48.
[6] N. Mathur, P. Bhatnagar, P. Sharma, Univers. J. Environ. Res. Technol. 2 (2012) 1-18.
[7] R. Kumar, G. Kumar, A. Umar, Mater. Lett. 97 (2013) 100-103.
[8] M. A. Chamjangali, G. Bagherian, B. Bahramian, B.F. Rad, Int. J. Environ. Sci. Technol. 12 (2015) 151–160.
[9] N.Z. Razali, A.H. Abdullah, M. Haron, Environ. Eng. Manag. J. 10 (2011) 1523-1528.
[10] N. Tripathy, R. Ahmad, J.E. Song, H.A. Ko, Y.B. Hahn, G. Khang, Mater. Lett. 136 (2014) 171-174.
[11] F. Tian, Z.S. Wu, Q.Y. Chen, Y.J. Yan, G. Cravotto, Z.L. Wu, Appl. Surf. Sci. 351 (2015) 104-112.
[12] A. Nezamzadeh-Ejhieh, H. Zabihi-Mobarakeh, J. Ind. Eng. Chem. 20 (2014) 1421–1431.
[13] H. Derikvandi, A. Nezamzadeh-Ejhieh, J. Colloid Interface Sci. 490 (2017) 314–327.
[14] K.M. Joshi, V.S. Shrivastava, Appl. Nanosci. 1 (2011) 147–155.
[15] M. Giahi, A. Hoseinpour Dargahi, Iran. J. Catal. 6 (2016) 381-387.
[16] M. Pirhashemi, A. Habibi-Yangjeh, Mater. Chem. Phys. 214 (2018) 107-119.
[17] D.D. Liu, Z.S. Wu, F. Tian, B.C. Ye, Y.B. Tong, J. Alloys Compd. 676 (2016) 489-498.
[18] S. Chidambaram, B. Pari, N. Kasi, S. Muthusamy, J. Alloys Compd. 665 (2016) 404-410.
[19] Y. Liu, L. Yu, Y. Hu, C.F. Guo, F.M. Zhang, X.W. Lou, Nanoscale 4 (2012) 183-187.
[20] A. Vázquez, D.B. Hernández-Uresti, S. Obregón, Appl. Surf. Sci. 386 (2016) 412-417.
[21] D. Pathania, D. Gupta, H. Ala, G. Sharma, A. Kumar, M. Naushad, J. Photochem. Photobiol. A 329 (2016) 61-68.
[22] H.J. Lee, J.H. Kim, S.S. Park, S.S. Hong, G.D. Lee, J. Ind. Eng. Chem. 25 (2015) 199–206.
[23] S.A. Ansari, M.M. Khan, M.O. Ansari, J. Lee, M.H. Cho, J. Phys. Chem. C 117 (2013) 27023-27030.
[24] N. Huang, J.X. Shu, Z.H. Wang, M. Chen, C.G. Ren, W. Zhang, J. Alloys Compd. 648 (2015) 919-929.
[25] M.M. Khan, J. Lee, M.H. Cho, J. Ind. Eng. Chem. 20 (2014) 1584-1590.
[26] S. Senapati, S.K. Srivastava, S.B. Singh, Nanoscale 4 (2012) 6604-6612.
[27] M. Thomas, G. Ahmad Naikoo, M. Ud Din Sheikh, M. Bano, F. Khan, J. Photochem. Photobiol. A 327 (2016) 33-43.
[28] S.P. Diego, L.D. Guilherme, A.M. Marcio, L.F. Edson, Global Nest J. 16 (2014) 690–698.
[29] K.D. Kim, D.N. Han, J.B. Lee, H.T. Kim, Scr. Mater. 54 (2006) 143-146.
[30] W.J. Li, E.W. Shi, Y.Q. Zheng, Z.W. Yin, J. Mater. Sci. Lett. 20 (2001) 1381-1383.
[31] M. Ristov, G. Sinadinovski, I. Grozdanov, M. Mitreski, Thin Solid Films 149 (1987) 65-71.
[32] A.A. Ismail, A. El-Midany, E.A. Abdel-Aal, H. El-Shall, Mater. Lett. 59 (2005) 1924-1928.
[33] R. Radha, A. Sakthivelu, D. Pradhabhan, C. Ravichandiran, S. Murugesan, E. Mohandas, P. Geethadhevi, Int. J. ChemTech Res. 6 (2014) 3374-3377.
[34] S. Lindroos, A. Arnold, M. Leskela, Appl. Surf. Sci. 158 (2000) 75-80.
[35] Y.F. Nicolau, M. Dupuy, M. Brunel, J. Electrochem. Soc. 137 (1990) 2915-2924.
[36] H.M. Pathan, C.D. Lokhande, Bull. Mater. Sci. 27 (2004) 85-111.
[37] T.A. Vijayan, R. Chandramohan, S. Valanarasu, J. Thirumalai, S. Venkateswaran, T. Mahalingam, S.R. Srikumar, Sci. Tech. Adv. Mater. 9 (2008) 1-5.
[38] K. Ramamoorthy, M. Arivanandhan, K. Sankaranarayanan, C. Sanjeeviraja, Mater. Chem. Phys. 85 (2004) 257-262.
[39] P. Mitra, A.P. Chatterjee, H.S. Maiti, J. Mater. Sci. 9 (1998) 441-445.
[40] A. Sakthivelu, S. Valanarasu, J. Joseph Prince, Int. J. Chem. Sci. 7 (2009) 2463-2469.
[41] P. Mitra, S. Mondal, Prog. Theor. Appl. Phys. 1 (2013) 17-31.
[42] A.P. Chatterjee, P. Mitra, A.K. Mukhopadhyay, J. Mater. Sci. 34 (1999) 4225-4231.
[43] S. Patra, S. Mondal, P. Mitra, J. Phys. Sci. 13 (2009) 229-234.
[44] S. Aghdasi, M. Shokri, Iran. J. Catal. 6 (2016) 481-487.
[45] R. Kumar, G. Kumar, A. Umar, Mater. Lett. 97 (2013) 100-103.
[46] S. Aiswarya Devi, M. Harshiny, S. Udaykumar, P. Gopinath, M. Matheswaran, Toxicol. Res. 6 (2017) 854-865.
[47] M. Salem, S. Akir, T. Ghrib, K. Daoudi, M. Gaidi, J. Alloys Compd. 685 (2016) 107-113.
[48] J. Xie, P. Li, Y. Wang, Y. Wei, J. Phys. Chem. Solids 70 (2009) 112-116.
[49] M. Bordbara, Z. Sayban, A. Yeganeh-Faal, B. Khodadadi, Iran. J. Catal. 8 (2018) 113-120.
[50] S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, V. Murugesan, Sol. Energy Mater. Sol. Cells 77 (2003) 65-82.
[51] M. Omar Fatehah, H. Abdul Aziz, S. Stoll, J. Colloid Sci. Biotechnol. 3 (2014) 75-84.
[52] A. Eslami, A. Oghazyan, M. Sarafraz, Iran. J. Catal. 8 (2018) 95-102.
[53] M. Farrokhi, S. Hosseini, J. Yang, M. Shirzad-Siboni, Water Air Soil Pollut. 225 (2014) 1-12.
[54] A.H. Mahvi, M. Ghanbarian, S. Nasseri, A. Khairi, Desalination 239 (2009) 309-316.
[55] S.D. Khairnar, M.R. Patil, V.S. Shrivastava, Iran. J. Catal. 8 (2018) 143-150.
[56] L.A. Ghule, A.A. Patil, K.B. Sapnar, S.D. Dhole, K.M. Garadkar, Toxicol. Environ. Chem. 93 (2011) 623–634.
[57] T.E. Agustina, H.M. Ang, V.K. Pareek, J. Photochem. Photobiol. C 6 (2005) 264–273.
[58] H. Wang, C. Xie, W. Zhang, S. Cai, Z. Yang, Y. Gui, J. Hazard. Mater. 141 (2007) 645-652.
[59] S. Vadaei, H. Faghihian, Environ. Toxicol. Pharmacol. 58 (2018) 45-53.
[60] A. Nezamzadeh-Ejhieh, M. Karimi-Shamsabadi, Appl. Catal. A 477 (2014) 83–92.
[61] N. Sobana, B. Krishnakumar, M. Swaminathan, Mater. Sci. Semicond. Process. 16 (2013) 1046-1051.
[62] V. Djokić, J. Vujović, A. Marinković, R. Petrović, D. Janaćković, A. Onjia, D. Mijin, J. Serbian Chem. Soc. 77 (2012) 1747-1757.