Effect of acidity and physical properties of nanozeolite catalyst on hydrocracking of vacuum gas oil
الموضوعات : Iranian Journal of CatalysisMina Hadi 1 , Hamid Reza Bozorgzadeh 2 , Hamid Reza Aghabozorg 3 , Mohammad Reza Ghasemi 4
1 - Catalysis Research Division, Research Institute of Petroleum Industry (RIPI), Tehran, Iran.
2 - Catalysis Research Division, Research Institute of Petroleum Industry (RIPI), Tehran, Iran.
3 - Catalysis Research Division, Research Institute of Petroleum Industry (RIPI), Tehran, Iran.
4 - Faculty of Engineering and Technology, Tehran North Branch, Islamic Azad University, Tehran, Iran.
الکلمات المفتاحية: Acidity, Hydrocracking, Beta nanozeolite, USY nanozeolite, Middle distillate,
ملخص المقالة :
In this study, beta nanozeolite, ultra-stable Y zeolite (USY) and amorphous silica-alumina (ASA) were synthesized. These compounds were used as the support of hydrocracking catalyst. Ni-Mo/beta zeolite-ASA and Ni-Mo/USY zeolite-ASA catalysts were prepared by the impregnation method. The samples were characterized with X-Ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), temperature programmed desorption (TPD) and BET methods. Catalytic behavior of these catalysts was evaluated on hydrocracking of vacuum gas oil at 400 and 55 bar in a fixed bed continuous microreactor. The XRD patterns of the prepared samples determined the phase structure of the samples. FE-SEM images of the nanozeolites indicated that the particle sizes of them are less than 10 nm. The results indicated that the catalyst containing USY with higher pore diameter and acidity was more useful in middle distillate products (87%), while the conversion of the catalyst containing beta zeolite was more than the other catalysts (44.8%).
[1] P.P. Dik, I.G. Danilova, L.S. Golubev, M.O. Kazakov, K.A. Nadeina, S.V. Budukva, V. Yu. Pereyma, O.V. Klimov, I.P. Prosvirin, E. Yu. Gerasimov, T.O. Bok, I.V. Dobrekova, E.E. Knyazeva, I.I. Ivanova, A.S. Noskov, Fuel 237 (2019) 178–190.
[2] Q. Cui, Y. Zhou, Q. Wei, G. Yu, L. Zhu, Fuel Process. Technol. 106 (2013) 439-446.
[3] L-E. Sandoval-Diaz, J-A. Gonzalez-Amaya, C-A. Trujillo, Microporous Mesoporous Mater. 215 (2015) 229-243.
[4] I.C. Neves, G. Botelho, A.V. Machado, P. Rebelo, Eur. Polym. J. 42 (2006) 1541-1547.
[5] Q. Cui, Y. Zhou, Q. Wei, X. Tao, G. Yu, Y. Wang, J. Yang, Energy Fuel 26 (2012) 4664−4670.
[6] J. Francis, E. Guillon, N. Bats, C. Pichon, A. Corma, L.J. Simon, Appl. Catal. A 410 (2011) 140−147.
[7] A.A. Asadi, S.M. Alavi, S.J. Royaee, M. Bazmi, Microporous Mesoporous Mater. 259 (2018) 142-154.
[8] L. Ding, Y. Zheng, Z. Zhang, Z. Ring, J. Chen, J. Catal. 241 (2006) 435-445.
[9] M.A. Ali, T. Tatsumi, T. Masuda, Appl. Catal. A 233 (2002) 77–90.
[10] D. Karami, N. Mahinpey, Chem. Engin. Commun. 203 (2016) 251-257.
[11] L. Ding, Y. Zheng, H. Yang, R. Parviz, App. Catal. A 353 (2009) 17–23.
[12] M. Heuchel, Ch. Dörr, R. Boldushevskii, S. Lang, E. Klemm, Y. Traa, Appl. Catal. A 553 (2018) 91–106.
[13] S. Chen, T. Li, G. Cao, M. Guan, US Pat. (2002) 6 399 530.
[14] C. Leyva, M.S. Rana, F. Trejo, J. Ancheyta. Catal. Today. 141 (2009) 168–175.
[15] M. Majka, G. Tomaszewicz, A. Mianowski, J. Energy Instit. 91 (2018) 1164-1176.
[16] J. Jiang, Zh. Dong, H. Chen, J. Sun, Ch. Yang, F. Cao, Energy Fuel 27 (2013) 1035-1039.
[17] M. Subsadsana, P. Kham-or, P. Sangdara, P. Suwannasom, Ch. Ruangviriyachai, J. Fuel. Chem. Technol. 45 (2017) 805-816.
[18] X. Wang, F. Guo, X. Wei, Z. Liu, W. Zhang, S. Guo, L. Zhao, Korean J. Chem. Eng. 33 (2016) 2034–2041.
[19] C. Manrique, A. Guzmán, J. Pérez-Pariente, C. Márquez-Álvarez, A. Echavarría, Microporous Mesoporous Mater. 234 (2016) 347-360.
[20] L. Ding, Y. Zheng, Z. Zhang, Z. Ring, J. Chen, Appl. Catal. A 319 (2007) 25–37.
[21] A. Hassan, S. Ahmed, M.A. Ali, H. Hamid, T. Inui, Appl. Catal. A 220 (2001) 59–68.