Spotlight: Catalytic vinylogous anomeric based oxidation (Part I)
الموضوعات : Iranian Journal of Catalysis
1 - Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran.
الکلمات المفتاحية: anomeric effect, Anomeric based oxidation, Catalytic vinylogous anomeric based oxidation,
ملخص المقالة :
Stereoelectronic effects is a bridge between structure and reactivity [1]. Anomeric effect plays an important role in the domain of stereoelectronic interaction and can be used for description of several unusual phenomena. Intramolecular negative hyperconjugation is also known as anomeric effect [2]. In anomeric effect, both donor (lone pairs) and acceptor groups (electronegative elements) coexist in a proper molecule. This coexistence causes the acceptor groups to prefer the axial position in anomeric position (Scheme 1) [1, 3-15]. Meysam Yarie was born in 1987 in Malayer/ Hamedan, Iran. He received his B.Sc. in Applied Chemistry from Malek-Ashtar University of Technology and M.Sc. in Organic Chemistry from Kurdistan University under the supervision of Dr. Kamal Amani. He received his Ph.D. from Bu-Ali Sina University under the supervision of Professor Mohammad Ali Zolfigol. He is currently working towards his Post-Doctoral under the supervision of Professor Mohammad Ali Zolfigol at Bu-Ali Sina University. His research interest is the design, synthesis, characterization and applications of task-specific catalysts, ionic liquids and molten salts in the organic synthesis.
[1] I.V. Alabugin, Stereoelectronic Effects: A Bridge Between Structure and Reactivity, Wiley, Hoboken, 2016.
[2] A.A. Taherpour, M.A. Zolfigol, J. Mol. Struct. 1179 (2019) 719-724.
[3] S.A. Glover, A.A. Rosser, A.A. Taherpour, B.W. Greatrex, Aus. J. Chem. 67 (2014) 507-520.
[4] D.P. Curran, N.A. Porter, B. Giese, Stereochemistry of radical reactions: concepts, guidelines, and synthetic applications, VCH, New York, 1995.
[5] V.F. Rudchenko, Chem. Rev. 93 (1993) 725-739.
[6] S.A. Glover, Tetrahedron 54 (1998) 7229-7271.
[7] S.A. Glover, A.A. Rosser, J. Phys. Org. Chem. 28 (2015) 215-222.
[8] H. Song, Y. Kim, J. Park, K. Kim, E. Lee, Synlett 27 (2016) 477-485.
[9] V.G.S. Box, J. Mol. Struct. 569 (2001) 167-178.
[10] E. Juaristi, G. Cuevas, Tetrahedron 48 (1992) 5019-5087.
[11] I.V. Alabugin. G.D.P. Gomes. M.A. Abdo, WIREs Comput. Mol. Sci. 9 (2018) e1389.
[12] I.V. Alabugin, K.M. Gilmore, P.W. Peterson, WIREs Comput. Mol. Sci. 1 (2011) 109-141.
[13] S.Z. Vatsadze, Y.D. Loginova, G.D.P. Gomes, I.V. Alabugin, Chem. Eur. J. 23 (2016) 3225-3254.
[14] Deslongchamps, P. Pure Appl. Chem. 65 (2009) 1161-1178.
[15] M. Yarie, Iran. J. Catal. Spotlight 7 (2017) 85-88.
[16] M. Oki, H. Ikeda, S. Toyota, Bull. Chem. Soc. Jpn. 72 (1999) 1343-1349.
[17] D.P. Curran, Y.G. Suh, Carbohydr. Res. 17 (1987) 161-191.
[18] (a) S.E. Denmark, M.S. Dappen, N.L. Sear, R.T. Jacobs, J. Am. Chem. Soc. 112 (1990) 3466-3474. (b) A. Nowacki, B. Liberek, Carbohydr. Res. 462 (2018) 13-27. (c) A. Nowacki, B. Liberek, Carbohydr. Res. 371 (2013) 1-7. (d) A. Nowacki, D. Walczak, B. Liberek, Carbohydr. Res. 352 (2012) 177-185. (e) M. Asgari, D. Nori-Shargh, Struct. Chem. 28 (2017) 1803-1814.
[19] A.R. Katritzky, P.J. Steel, S.N. Denisenko, Tetrahedron 57 (2001) 3309-3314.
[20] M.A. Zolfigol, M. Kiafar, M. Yarie, A.(A.) Taherpour, T. Fellowes, A. N. Hancok, A. Yari, J. Mol. Struct. 1137 (2017) 674-680.
[21] A.(A.) Taherpour, M.A. Zolfigol, RSC Adv. 7 (2017) 53617-53621.
[22] S. Baghery, M.A. Zolfigol, F. Maleki, New J. Chem. 41 (2017) 9276-9290.
[23] A.(A.) Taherpour, A. Yari, F. Ghasemhezaveh, M.A. Zolfigol, J. Iran. Chem. Soc. 14 (2017) 2485-2493.
[24] M.A. Zolfigol, M. Safaiee, B. Ebrahimghasri, S. Baghery, S. Alaie, M. Kiafar, A.(A.) Taherpour, Y. Bayat, A. Asgari, J. Iran. Chem. Soc. 14 (2017) 1839-1852.
[25] M.A. Zolfigol, A. Khazaei, F. Karimitabar, M. Hamidi, F. Maleki, B. Aghabarari, F. Sefat, M. Mozafari, J. Heterocycl. Chem. 55 (2018) 1061-1068.
[26] J. Afsar, M.A. Zolfigol, A. Khazaei, D.A. Alonso, A. Khoshnood, Y. Bayat, A. Asgari, Res. Chem. Intermed. 44 (2018) 7595-7618.
[27] M.A. Zolfigol, F. Karimi, M. Yarie, M. Torabi, Appl. Organometal. Chem. 32 (2018) e4063.
[28] M. Safaiee, B. Ebrahimghasri, M.A. Zolfigol, S. Baghery, A. Khoshnood, D.A. Alonso, New J. Chem. 42 (2018) 12539-12548.
[29] S. Babaee, M.A. Zolfigol, M. Zarei, J. Zamanian, ChemistrySelect 3 (2018) 8947-8954.
[30] M. Torabi, M. Yarie, M.A. Zolfigol, Appl. Organometal. Chem. 33 (2019) e4933.
[31] F. Karimi, M.A. Zolfigol, M. Yarie, Mol. Catal. 463 (2019) 20-29.
[32] S. Kalhor, M. Yarie, M. Rezaeivala, M.A. Zolfigol, 45 (2019) 3453-3480.
[33] H.M.F. Elnagdy, D. Sarma, ChemistrySelect 4 (2019) 783-787.
[34] S. Noura, M. Ghorbani, M. A. Zolfigol, M. Narimani, M. Yarie, M. Oftadeh, J. Mol. Liq. 271 (2018) 778-785.
[35] D. Khaledian, A. Rostami, S.A. Zarei, B. Mohammadi, J. Iran. Chem. Soc. 16 (2019) 1871-1878.
[36] J. Afsar, M. A. Zolfigol, A. Khazaei, M. Zarei, Y. Gu, D. A. Alonso, A. Khoshnood, Mol. Catal. 2019, doi: 10.1016/j.mcat.2019.110666.