One-pot three-component synthesis of tetrahydrobenzo[b]pyrans in the presence of Ni0.5Cu0.5Fe2O4 magnetic nanoparticles under microwave irradiation in solvent-free conditions
الموضوعات : Iranian Journal of CatalysisHamideh Ahankar 1 , Saeid Taghavi Fardood 2 , Ali Ramazani 3
1 - Department of Chemistry, Abhar Branch, Islamic Azad University, P. O. Box 22, Abhar, Iran.
2 - Department of Chemistry, University of Zanjan, P O Box 45195-313, Zanjan, Iran.
3 - Research Institute of Modern Biological Techniques, University of Zanjan, P O Box 45195-313, Zanjan, Iran.
الکلمات المفتاحية: Microwave irradiation, Solvent-free, Magnetic nanoparticles, ferrite, Tetrahydrobrnzo[b]pyran drivetives,
ملخص المقالة :
Ni0.5Cu0.5Fe2O4 magnetic nanoparticles using Arabic gel (AG) as a reducing and stabilizing agent was prepared by the sol-method. The catalyst identification was performed using Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The magnetic analysis showed that the Ni0.5Cu0.5Fe2O4 had a ferromagnetic behavior with a saturation magnetization of 31.22 emu/g at room temperature. Then, Ni0.5Cu0.5Fe2O4 magnetic nanoparticles were applied as a green, convenient, effective and reusable catalyst for the one-pot three-component synthesis of tetrahydrobenzo[b]pyrans in good to excellent yields. It should be noted, the nanocatalyst is separated by a magnet was used several times and it was as efficient as ever.
[1] G. Green, J. Evans, A. Vong, A. Katritzky, C. Rees, E. Scriven, pyran and their benzo derivatives, Synthesis 5 (1995) 469.
[2] S. J. Mohr, M. A. Chirigos, F. S. Fuhrman, J. W. Pryor, Cancer Res. 35 (1975) 3750-3754.
[3] M. T. Flavin, J. D. Rizzo, A. Khilevich, A. Kucherenko, A. K. Sheinkman, V. Vilaychack, L. Lin, W. Chen, E. M. Greenwood, T. Pengsuparp, J. Med. Chem. 39 (1996) 1303-1313.
[4] E. Reboul, M. Richelle, E. Perrot, C. Desmoulins-Malezet, V. Pirisi, P. Borel, J. Agric. Food Chem. 54 (2006) 8749-8755.
[5] T. Raj, R. K. Bhatia, M. Sharma, A. Saxena, M. Ishar, Eur. J. Med. Chem 45 (2010) 790-794.
[6] I. Manolov, C. Maichle-Moessmer, N. Danchev, Eur. J. Med. Chem 41 (2006) 882-890.
[7] D.-O. Moon, K.-C. Kim, C.-Y. Jin, M.-H. Han, C. Park, K.-J. Lee, Y.-M. Park, Y. H. Choi, G.-Y. Kim, Int. Immunopharmacol. 7 (2007) 222-229.
[8] U. Sharma, U. Sharma, A. Singh, V. Agarwal, J. Pharmacol. Res. 1 (2010) 17-20.
[9] Y. L. Zhang, B. Z. Chen, K. Q. Zheng, M. L. Xu, X. H. Lei, X. B. Yaoxue, Chem. Abstr. 96 (1982) 135383e.
[10] G. P. Ellis, Chromenes, chromanones, chromones in the chemistry of heterocyclic compounds, Chapter II, Wiley, 1977.
[11] E. A. A. Hafez, M. H. Elnagdi, A. G. A. Elagamey, F. M. A. A. El-Taweel, Heterocycles 26 (1987) 903-907.
[12] C. D. Hufford, B. O. Oguntimein, D. Van Engen, D. Muthard, J. Clardy, J. Am. Chem. Soc. 102 (1980) 7365-7367.
[13] J. Wandji, Z. T. Fomum, F. Tillequin, F. Libot, M. Koch, J. Nat. Prod. 58 (1995) 105-108.
[14] F. Victorine, E. Augustin, J. Nat. Prod. 61 (1998) 380-383.
[15] S. Kudoh, H. Okada, K. Nakahira, H. Nakamura, Anal. Sci. 6 (1990) 53-56.
[16] I. Devi, P. J. Bhuyan, Tetrahedron Lett. 45 (2004) 8625-8627.
[17] A. Saini, S. Kumar, J. S. Sandhu, Synlett 12 (2006) 1928-1932.
[18] C. Feng, Q. Wang, C. Lu, G. Yang, Z. Chen, Comb. Chem. High Throughput Screen. 15 (2012) 100-103.
[19] V. Pagore, S. U. Tekale, V. B. Jadhav, R. P. Pawar, Iran. J. Catal. 6 (2016) 189-192.
[20] M. R. Khumalo, S. N. Maddila, S. Maddila, S. B. Jonnalagadda, BMC Chem. 13 (2019) 1-7.
[21] S. Santra, M. Rahman, A. Roy, A. Majee, A. Hajra, Org. Chem. Int. 2014 (2014) Article ID 851924.
[22] V. U. Mane, S. M. Chavan, B. Choudhari, D. V. Mane, J. Pharm. Chem. Biol. Sci. 6 (2019) 311-319.
[23] J. T. Li, W. Z. Xu, L. C. Yang, T. S. Li, Synth. Commun. 34 (2004) 4565-4571.
[24] D. Elhamifar, Z. Ramazani, M. Norouzi, R. Mirbagheri, J. Colloid Interface Sci. 511 (2018) 392-401.
[25] M. Esmaeilpour, J. Javidi, F. Dehghani, F. N. Dodeji, RSC Adv. 5 (2015) 26625-26633.
[26] A. Saini, S. Kumar, J. S. Sandhu, Synlett 2006 (2006) 1928-1932.
[27] J. Zheng, Y. Li, Mendeleev Commun. 21 (2011) 280-281.
[28] H. Hu, F. Qiu, A. Ying, J. Yang, H. Meng, Int. J. Mol. Sci. 15 (2014) 6897-6909.
[29] D. Shi, J. Mou, Q. Zhuang, X. Wang, J. Chem. Res. 2004 (2004) 821-823.
[30] T.-S. Jin, A.-Q. Wang, F. Shi, L.-S. Han, L.-B. Liu, T.-S. Li, Arkivoc 14 (2006) 78-86.
[31] A. A. Mohammadi, M. R. Asghariganjeh, A. Hadadzahmatkesh, Arab. J. Chem. 10 (2017) S2213-S2216.
[32] S. Balalaie, M. Bararjanian, A. M. Amani, B. Movassagh, Synlett 2006 (2006) 263-266.
[33] D. Tahmassebi, J. A. Bryson, S. I. Binz, Synth. Commun. 41 (2011) 2701-2711.
[34] A. Davoodnia, S. Allameh, S. Fazli, N. Tavakoli-Hoseini, Chem. Pap. 65 (2011) 714-720.
[35] M. Khoobi, L. Ma’mani, F. Rezazadeh, Z. Zareie, A. Foroumadi, A. Ramazani, A. Shafiee, J. Mol. Catal. A: Chem. 359 (2012) 74-80.
[36] M. Sadeghpour, Iran. Chem. Commun. 4 (2016) 57-66.
[37] S. Rathod, B. Arbad, M. Lande, Chin. J. Catal. 31 (2010) 631-636.
[38] N. Hazeri, M. T. Maghsoodlou, F. Mir, M. Kangani, H. Saravani, E. Molashahi, Chin. J. Catal. 35 (2014) 391-395.
[39] E. Sheikhhosseini, D. Ghazanfari, V. Nezamabadi, Iran. J. Catal. 3 (2013) 197-201.
[40] M. M. Heravi, Y. S. Beheshtiha, Z. Pirnia, S. Sadjadi, M. Adibi, Synth. Commun. 39 (2009) 3663-3667.
[41] T.-S. Jin, A.-Q. Wang, X. Wang, J.-S. Zhang, T.-S. Li, Synlett (2004) 871-873.
[42] E. Mosaddegh, A. Hassankhani, G. Mansouri, J. Chem. 8 (2011) 529-534.
[43] M. Kangani, N. Hazeri, M. T. Maghsoodlou, J. Chin. Chem. Soc. 63 (2016) 896-901.
[44] I. A. Azath, P. Puthiaraj, K. Pitchumani, ACS Sustain. Chem. Eng. 1 (2012) 174-179.
[45] D. Kumar, V. B. Reddy, S. Sharad, U. Dube, S. Kapur, Eur. J. Med. Chem 44 (2009) 3805-3809.
[46] S. Balalaie, M. Sheikh-Ahmadi, M. Bararjanian, Catal. Commun. 8 (2007) 1724-1728.
[47] F. Teimouri, S. H. Khezri, J. Azizian, Iran. J. Catal. 5 (2015) 253-259.
[48] S. Taghavi Fardood, A. Ramazani, J. Appl. Chem. Res. 12 (2018) 8-15.
[49] S. Taghavi Fardood, A. Ramazani, Z. Golfar, S. W. Joo, J. Appl. Chem. Res. 11 (2017) 19-27.
[50] S. Taghavi Fardood, A. Ramazani, S. W. Joo, J. Appl. Chem. Res. 11 (2017) 8-17.
[51] S. Taghavi Fardood, A. Ramazani, S. W. Joo, J. Appl. Chem. Res. 12 (2018) 8-15.
[52] S. Taghavi Fardood, F. Moradnia, A. Ramazani, Micro. Nano Lett. 14 (2019) 986-991.
[53] A. Ramazani, S. Taghavi Fardood, Z. Hosseinzadeh, F. Sadri, S. W. Joo, Iran. J. Catal. 7 (2017) 181-185.
[54] S. S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, M. Sastry, Nat. Mater. 3 (2004) 482.
[55] S. Taghavi Fardood, A. Ramazani, F. Moradnia, Z. Afshari, S. Ganjkhanlu, F. Yekke Zare, Chem. Method. 3 (2019) 696-706.
[56] S. T. Fardood, A. Ramazani, S. Moradi, Chem. J. Mold. 12 (2017) 115-118.
[57] F. Moradnia, S. Taghavi Fardood, A. Ramazani, V. K. Gupta, J. Photochem. Photobiol. A: Chem. 392 (2020) 112433.
[58] S. Taghavi Fardood, F. Moradnia, M. Mostafaei, Z. Afshari, V. Faramarzi, S. Ganjkhanlu, Nanochem. Res. 4 (2019) 86-93.
[59] S. Taghavi Fardood, A. Ramazani, Z. Golfar, S. W. Joo, J. Struct. Chem. 59 (2018) 1730-1736.
[60] S. Taghavi Fardood, R. Forootan, F. Moradnia, Z. Afshari, A. Ramazani, Mater. Res. Express 7 (2020) 015086.