Applying Taguchi method to optimize the synthesis conditions of ZrO2/TiO2/ZnO nanocomposite for high-performance photodegradation of Congo red
الموضوعات : Iranian Journal of CatalysisToktam Seyedi-Chokanlou 1 , Shokufeh Aghabeygi 2 , Nasibeh Molahasani 3 , Fahimeh Abrinaei 4
1 - Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran, Iran
2 - Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran, Iran
3 - Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran, Iran
4 - Department of Physics, East Tehran Branch, Islamic Azad University, Tehran, Iran
الکلمات المفتاحية: Optimization, Taguchi Method, Photodegradation, Synthesis condition, ZrO2/TiO2/ZnO nanocomposite,
ملخص المقالة :
In this work, ZrO2/TiO2/ZnO ternary nanocomposites were prepared by the sol-gel technique. The Taguchi method with the L9 orthogonal array was utilized to optimize the experimental conditions for the preparation of nanocomposites. The design has four factors, and each factor has three levels. The design factors of this study were calcination temperature, the aging time, the calcination time, and ultrasonic irradiation duration. Furthermore, as-synthesized structural features of nanocomposites were characterized, utilizing XRD, BET, FESEM, and EDX. The photocatalytic activities of all ZrO2/TiO2/ZnO nanocomposites were evaluated by the photodegradation of Congo red (CR) as an azo dye. The photocatalytic property of nanocomposites was enhanced by decreasing particle size and increasing the surface area. The best sample photodegraded 97% the CR solution within 15 min under an 8W UV lamp. The optimal conditions were achieved as 400 ºC calcination temperature, 72 h aging time, 4 h calcination time, and 30 min duration of ultrasonic irradiation for CR solution photodegradation. The effect of each parameter was evaluated using ANOVA analysis. The kinetics results showed the pseudo-first-order reaction mechanism for the photocatalytic activities of the nanocomposites.
[1] W. Li, B. Mu, Y. Yang, Bioresource Technol., 277 (2019) 157–170.
[2] A. Nezamzadeh-Ejhieh, E. Shahriari, J. Ind. Eng. Chem., 20 (2014) 2719–2726.
[3] C.N.C. Hitam, A.A. Jalil, J. Environ. Manage, 258 (2020) 110050–110068.
[4] P.M. Dellamatrice, M.E. Silva-Stenico, L.A.B. de Moraes, M.F. Fiore, R.T.R. Monteiro, Braz. J. Microbiol., 48 (2017) 25-31.
[5] S. Zereshki, P. Daraei, A. Shokri, J. Hazard. Mater. 356 (2018) 1-8.
[6] A. Muleja, B. Mamba, J. Env. Chem. Eng., 6 (2018) 4850-4863.
[7] P. Nidheesh, M. Zhou, M.A. Oturan, Chemosphere, 197 (2018) 210-227.
[8] Y. Wang, Y. Pan, T. Zhu, A. Wang, Y. Lu, L. Lv, K. Zhang, Z. Li, Sci. Total. Environ. 634 (2018) 616-627.
[9] S.P. Ghuge, A.K. Saroha, J. Water Process Eng., 23 (2018) 217-229.
[10] M. Ahmad, E. Ahmed, Z. Hong, W. Ahmed, A. Elhissi, N. Khalid, Ultrason. Sonochem. 21 (2014) 761-773.
[11] D. Ayodhya, G. Veerabhadram, Mater. Today Energy, 9 (2018) 83-113.
[12] A. Nezamzadeh-Ejhieh, H. Zabihi-Mobarakeh, J. Ind. Eng. Chem., 20 (2014) 1421-1431.
[13] A. Buthiyappan, A. R. Abdul Aziz, W. M. Ashri Wan Daud, Rev Chem Eng 32 (2016) 1–47
[14] A. Nezamzadeh-Ejhieh, Z. Salimi, Appl. Catal. A-Gen., 390 (2010) 110–118.
[15] N. Arabpour, A. Nezamzadeh-Ejhieh, Mater. Sci. Semicond. Proces. 31 (2015) 684–692.
[16] S. Senobari, A. Nezamzadeh-Ejhieh, J. Mol. Liq., 257 (2018) 173-183.
[17] J. Tian, L. Chen, Y. Yin, X. Wang, J. Dai, Z. Zhu, X. Liu, P. Wu, Surf. Coat. Tech., 204 (2009) 205-214.
[18] B. Neppolian, Q. Wang, H. Yamashita, H. Choi Appl. Catal. A-Gen., 333 (2007) 264-271.
[19] C. S. Chou, C. Y. Ho, C. I. Huang, Adv. Powder Technol., 20 (2009) 55-61.
[20] C.-S. Chou, R.-Y. Yang, J.-H. Chen, S.-W. Chou, Powder Technol., 199 (2010) 264-271.
[21] M. Barmala, A. Moheb, R. Emadi, J Alloy Compd., 485 (2009) 778-782.
[22] Y. Q. Song, D. H. He, B. Q. Xu, Appl. Catal. A-Gen., 337 (2008) 19-28.
[23] X. Xu, J. Wang, J. Tian, X. Wang, J. Dai, X. Liu, Ceram. Int. 37 (2011) 2201-2206.
[24] S. Aghabeygi, M. Khademi-Shamami, Ultrason. Sonochem. 41 (2018) 458-465.
[25] A. Nezamzadeh-Ejhieh, M. Bahrami, Desalin. Water Treat. 55 (2015) 1096-1104.
[26] A.E. Kandjani, M.F. Tabriz, B. Pourabbas, Mater. Res. Bull., 43 (2008) 645-654.
[27] N. Arefian, A. Shokuhfar, M.R. Vaezi, A. Esmaielzadeh Kandjani, M. Farzalipour Tabriz, Defect Diffus. Forum, 273 (2008) 34-39.
[28] R. Mahdavi, S.S.A. Talesh, Ultrason. Sonochem. 39 (2017) 504-510.
[29] G.O. Oladipo, A.K. Akinlabi, S.O. Alayande, T.A. Msagati, H.H. Nyoni, O.O. Ogunyinka, Can. J. Chem., 97 (2019) 642-650.
[30] B. Manikandan, R. John, Iran. J. Catal. 10 (1), 2020, 1-16
[31] G. Zhou, J. Deng, Mat. Sic. Semicon. Proc., 10 (2007) 90-96.
[32] D. Ramírez-Ortega, A.M. Meléndez, P. Acevedo-Peña, I. González, R. Arroyo, Electrochim. Acta, 140 (2014) 541-549.
[33] C. Chen, P. Liu, C. Lu, Chem. Eng. J., 144 (2008) 509-513.
[34] N. Xiao, Z. Li, J. Liu, Y. Gao, Thin Solid Films, 519 (2010) 541-548.
[35] N. Ibrahim, S. Al-Shomar, S.H. Ahmad, Appl. Surf. Sci., 283 (2013) 599-602.
[36] B. Divband, A. Jodaie, M. Khatmian, Iran. J. Catal., 9 (1), 2019, 63-70.
[37] X. Zou, X. Li, Z. Qu, Q. Zhao, Y. Shi, Y. Chen, M. Tade, S. Liu, Mater. Res. Bull., 47 (2012) 279-284.
[38] S.M. Saleh, Spectrochim. Acta A, 211 (2019) 141-147.
[39] S. Klubnuan, S. Suwanboon, P. Amornpitoksuk, Opt. Mater., 53 (2016) 134-141.
[40] N. Omrani, A. Nezamzadeh-Ejhieh, M. Alizadeh, Desalin. Water Treat. 162 (2019) 290–302.
[41] B. M. Pirzada, N. A. Mir, N. Qutub, O. Mehraj, S. Sabir, M. Muneer, Mater. Sci. Eng: B, 193 (2015) 137-145.