Investigation on the Photocatalytic and Antibacterial Activities of Green synthesized Cupric Oxide Nanoparticles using Clitoria ternatea
الموضوعات : Iranian Journal of CatalysisS. Prabhu 1 , T. Daniel Thangadurai 2 , P. Vijai Bharathy 3 , Pon. Kalugasalam 4
1 - Department of Research and Development, Bharathiar University, Coimbatore, Tamil Nadu, India|Department of Physics, Hindusthan College of Engineering and Technology, Coimbatore, Tamil Nadu, India
2 - Department of Chemistry, KPR Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
3 - Department of Physics, C.B.M College, Coimbatore, Tamil Nadu, India.
4 - Department of Physics, Anna University Regional Campus, Coimbatore, Tamil Nadu, India.
الکلمات المفتاحية: Green synthesis, photocatalytic dye degradation, CuO NPs, Clitoria ternatea, Antibacterial-activity,
ملخص المقالة :
Green synthesis of cupric oxide nanoparticles (CuO NPs) has been promoted as an environmentally-friendly, cost-effective and high yield method. The CuO NPs have been synthesized by reducing copper sulphate using an aqueous flower extract of Clitoria ternatea. The UV-visible peak observed at 251 nm confirmed the formation of CuO NPs. The optical bandgap energy value of CuO NPs was found to be 2.16 eV. The presence of Cu-O band at 490 cm−1 in the FTIR spectrum confirms the formation of the CuO NPs. The XRD exhibits monoclinic structure with an average crystallite size of 17.46 nm. The negative zeta potential value (-17.7 mV) demonstrated the stability of CuO NPs. The formation of agglomerated and roughly spherical NPS was shown by FESEM images. As seen in the HRTEM images, the nanostructure appears to be aggregated CuO NPs, and the average size of the particle was found to be 18 nm that matched with the XRD analysis. The EDX analysis showed presence of Cu (96.19%) and O (3.81%) in the spectrum. The CuO NPs exhibit significant antibacterial activity against Gram +Ve Staphylococcus aureus and Gram –Ve Escherichia coli bacteria. Finally, the synthesized CuO nanostructures demonstrate the photocatalytic degradation of Direct Red (DR) and Crystal Violet (CV) dyes under sunlight. The efficiency of degradation within 150 min was determined to be 65% and 88.3%, respectively for DR and CV. This effective removal method under sunlight may support a cost-effective method for degradation of DR and CV dyes from wastewater.
[1] N.H.A. Nguyen, V.V.T. Padil, V.I. Slaveykova, M. Cernik, A. Sevcu, , Nanoscale Res. Lett. 13 (2018) 1-13.
[2] M.S. Chavali, M.P. Nikolova, SN Appl. Sci. 1 (2019) 1-30.
[3] H. Derikvandi, A. Nezamzadeh-Ejhieh, J. Hazard.Mater.321 (2017) 629-638.
[4] G. Ali, Y.J. Park, J.W. Kim, S.O. Cho, ACS Appl. Nano Mater. 1 (2018) 6112–6122.
[5] M. Giahi, A. Hoseinpour Dargahi, Iran. J. Catal.6 (2016) 381-387.
[6] Hamid Reza Pouretedal, Mohammad Fallahgar, Fahimeh Sotoudeh Pourhasan, Mohammad Nasiri, Iran. J. Catal. 7 (2017) 317-326.
[7] S.Saranya S, R.Agneeswaran , P.N.Deepa, ACS Omega. 5 (2020) 1040–1051.
[8] Haffsa Siddiqui, M.S. Qureshi, Fozia Zia Haque, Nano-Micro Lett. 12:29 (2020) 1-12.
[9] Zahra Amani, A. Nezamzadeh-Ejhieh, J. Colloid Interf.Sci.504 (2017) 186-196.
[10] D. Manyasree, K.M. Peddi, R. Ravikumar, Int. J. Appl. Pharm. 9 (2017) 71–74.
[11] M.S. Jadhav, S. Kulkarni, P. Raikar, D.A. Barretto, S.K. Vootla, New J. Chem. 42 (2018) 204–213.
[12] A.A. Bhat, B.A. Thoker, A.K. Wani, G.A. Sheergojri, M.A. Kaloo, B.A. Bhat, S.M. Ahmad Rizvi, Chem. Sci. Eng. Res. 3(6) (2021) 25-29.
[13] M. Outokesh, M. Hosseinpour, S.J. Ahmadi, T. Mousavand, S. Sadjadi, W. Soltanian, Ind. Eng. Chem. Res. 50 (2011) 3540–3554.
[14] N. Silva, S. Ramírez, I. Díaz, A. Garcia, N. Hassan, Materials (Basel). 12 (2019) 1–13.
[15] L. Dorner, C. Cancellieri, B. Rheingans, M. Walter, R. Kagi, P. Schmutz, M. V. Kovalenko, L.P.H. Jeurgens, Sci. Rep. 9 (2019) 1–13.
[16] R. Katwal, H. Kaur, G. Sharma, M. Naushad, D. Pathania, J. Ind. Eng. Chem. 31 (2015) 173–184.
[17] P. Sutradhar, M. Saha, D. Maiti, J. Nanostructure Chem. 4 (2014) 4–9.
[18] A. Rastogi, M. Zivcak, O. Sytar, H.M. Kalaji, X. He, S. Mbarki, M. Front. Chem. 5 (2017) 1–16.
[19] S. Sharma, K. Kumar, A, J. Dispers. Sci. Technol. (2020) 1–13.
[20] Rakesh Chowdhury, Aslam. Khan, Md. Harunar Rashid, RSC Adv. 10 (2020) 14374–14385.
[21] Rajendran . A, Siva. E, Dhanraj C, Senthilkumar S, J. Bioprocess. Biotech. 8 (2018) 10003248.
[22] K.S. Siddiqi, M. Rashid, A. Rahman, Tajuddin, A. Husen, S. Rehman, Agric. Food Secur. 9 (2020) 1–15.
[23] G.K. Oguis, E.K. Gilding, M.A. Jackson, D.J. Craik, Front. Plant Sci. 10 (2019) 1–23.
[24] N. Jamil, F. PaEe, AIP Conf. Proc., AIP, Inc. 2002 (2018) 020044-45.
[25] Chakraborthy GS, Kumar V, Gupta S, Kumar A, Gautam N, Kumari L, J. Appl. Pharm. Sci. Res. 1 (2018) 3–9.
[26] Hadis Derikvandi, Alireza Nezamzadeh-Ejhieh, J. Colloid Interface Sci. 490 (2017) 652–664.
[27] Somayeh Dianat, Iran. J. Catal.8(2) (2018) 121-132.
[28] Alireza Nezamzadeh-Ejhieh, Zahra Salimi, Desalination. 280 (2011) 281–287.
[29] Shirin Ghattavi, Alireza Nezamzadeh-Ejhieh, Composites Part B. 183 (2020) 107712.
[30] Akbar Rostami-Vartoonia, Abolfazl Moradi-Saadatmanda, Mojtaba Bagherzadehb, Mohammad Mahdavic, Iran. J. Catal. 9 (2019) 27-35.
[31] S. Dharmraj Khairnar, M. Rajendra Patil, V. Shankar Shrivastava, Iran. J. Catal. 8 (2018) 143-150
[32] A. Sobhani-Nasab, M. Eghbali-Arani, S. Mostafa Hosseinpour-Mashkani, Ahmadi, M Rahimi-Nasrabadi, Vahid Ameri, Iran. J. Catal.10(2), 2020, 91-99
[33] S. Sathiyavimal, S. Vasantharaj, V. Veeramani, M. Saravanan, G. Rajalakshmi, T. Kaliannan, F. J. Environ. Chem. Eng. 9 (2021) 105033.
[34] M. Aminuzzaman, L.M. Kei, W.H. Liang, AIP Conf. Proc. 1828 (2017) 0200161-165.
[35] S. Prabhu, T.D. Thangadurai, P.V. Bharathy, Green-based Biosynthesis of Zinc Oxide Nanoparticles Using Clitoria ternatea Flower Extract and Its Antibacterial Activity, Nano Biomed. Eng. 13 (2021) 394-400.
[36] N. Venkatesh, S. Aravindan, K. Ramki, G. Murugadoss, R. Thangamuthu, P. Sakthivel, Environ. Sci. Pollut. Res. 28 (2021) 16792–16803.
[37] B. Kumar, K. Smita, L. Cumbal, A. Debut, Y. Angulo, J. Saudi Chem. Soc. 21 (2017) S475–S480.
[38] N.A. Ludin, M.A.M. Al-Alwani, A.B. Mohamad, A.A.H. Kadhum, N.H. Hamid, M.A. Ibrahim, Int. J. Electrochem. Sci. 13 (2018) 7451–7465.
[39] Hadis Derikvandi, Alireza Nezamzadeh-Ejhieh, J. Photochem.Photobiol. A: Chem. 348 (2017) 68-78.
[40] Meymanat Mehrali-Afjani, Alireza Nezamzadeh-Ejhieh, Hamidreza Aghaei Chem. Phys. Lett. 759 (2020) 137873.
[41] Manikandan Balakrishnan, Rita John, Iran. J. Catal.10 (2020) 1-16.
[42] W.W. Andualem, F.K. Sabir, E.T. Mohammed, H.H. Belay, B.A. Gonfa, J. Nanotechnol. 2 (2020) 1-10
[43] S. Sathiyavimal, S. Vasantharaj, D. Bharathi, M. Saravanan, E. Manikandan, S.S. Kumar, A. Pugazhendhi, J. Photochem. Photobiol. B Biol. 188 (2018) 126–134.
[44] Salma .A. Al-Tamimi, Green Chem. Lett. Rev. 14 (2021) 165–178.
[45] N. Krithiga, A. Rajalakshmi, A. Jayachitra, J. Nanosci. 2015 (2015) 1–8.
[46] D. Khwannimit, R. Maungchang, P. Rattanakit, Int. J. Environ. Anal. Chem. 10 (2020) 1–17.
[47] Alireza Nezamzadeh-Ejhieh, Shohreh Hushmandrad, Appl. Catal. A Gen. 388 (2010) 149–159.
[48] Ailin Yousefi, Alireza Nezamzadeh-Ejhieh, Mehrosadat Mirmohammadi, Environ. Technol. Innov. 22 (2021) 101496.
[49] G. Kausalya, N. Manjubaashini, P. Jerome, R. Karvembu, T. Daniel Thangadurai, Mater. Lett. 185 (2016) 218–221.
[50] M. Arun Kumar, A. Samson Nesaraj, Iran. J. Catal.10 (2020) 235-245.
[51] P. Yugandhar, T. Vasavi, P. Uma Maheswari Devi, N. Savithramma, Appl. Nanosci. 7 (2017) 417–427.
[52] S.C. Mali, A. Dhaka, C.K. Githala, R. Trivedi, Biotechnol. Reports. 27 (2020) e00518.
[53] A.D. Mahmoud, K.M. Al-Qahtani S.O. Alflaij, S.F. Al-Qahtani, F.A. Alsamhan, Sci. Rep. 11 (2021)1–13.
[54] M. Ali, M. Ijaz, M. Ikram, A. Ul-Hamid, M. Avais, A.A. Anjum, Nanoscale Res. Lett. 16 (2021) 1-13.
[55] Alireza Nezamzadeh-Ejhieh, Zohreh Banan, Desalination. 279 (2011) 146-151.
[56] H.R. Naika, K. Lingaraju, K. Manjunath, D. Kumar, G. Nagaraju, D. Suresh, H. Nagabhushana, J. Taibah Univ. Sci. 9 (2015) 7–12.
[57] Ailin Yousefi, Alireza Nezamzadeh-Ejhieh, Iran. J. Catal.11 (2021) 247-259
[58] N. Sreeju, Alex Rufus, Daisy Philip, J. Mol. Liq. 242 (2017) 690–700.