MgO support mediated enhancement of La2BMnO6 (B = Co, Ni) perovskite oxide in catalytic combustion of propane
الموضوعات : Iranian Journal of CatalysisHamidreza Roozbahani 1 , Sarah Maghsoodi 2 , Behrouz Raei 3 , Amirhossein Shahbazi Kootenaei 4 , Zoha Azizi 5
1 - Department of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran.
2 - Department of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran.
3 - Department of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran.
4 - Department of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran.
5 - Department of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran.
الکلمات المفتاحية: propane, Support, catalytic combustion, Double perovskite oxide, Composite oxide,
ملخص المقالة :
Perovskite oxides possessing high stability and composition adjustability are effective in many applications. The La2BMnO6 (B=Co, Ni) double perovskite oxides were synthesized using the sol-gel method and deposited on MgO support (loading = 10, 20, and 30 wt. %) using a mechanical mixing method by an ultrasonic device. The elaborated samples were investigated for application in propane deep oxidation. The catalytic performance of these catalysts was analyzed by a variety of characterization techniques such as XRD, SEM, FTIR, TEM, and H2-TPR. Ni-containing catalysts were found to have superior catalytic activity than the sample containing Co. The lowest catalytic activity belonged to the cobalt-containing double perovskite with 10 wt.% loading on MgO support, while the highest conversion was related to the 20La2NiMnO6/MgO composite oxide with T90 = 434 °C. The support showed a positive impact on the performance of the catalysts. Deposition of a certain amount of perovskite oxides on the support boosted the specific surface area of the catalyst and, therefore, combined with improved reducibility, improved propane catalytic degradation.
[1] M.S. Kamal, S.A. Razzak, M.M. Hossain, Atmos. Environ. 140 (2016) 117-134.
[2] M. Tomatis, H.-H. Xu, J. He, X.-D. Zhang, J. Chem. 2016 (2016) 8324826.
[3] Z. Zhang, Z. Jiang, W. Shangguan, Catal. Today. 264 (2016) 270-278.
[4] C. He, J. Cheng, X. Zhang, M. Douthwaite, S. Pattisson, Z. Hao, Chem. Rev. 119 (2019) 4471-4568.
[5] M. Zang, C. Zhao, Y. Wang, S. Chen, J. Saudi Chem. Soc. 23 (2019) 645-654.
[6] Y. Guo, M. Wen, G. Li, T. An, Appl. Catal. B Environ. 281 (2021) 119447.
[7] R. Liu, H. Wu, J. Shi, X. Xu, D. Zhao, Y.H. Ng, M. Zhang, S. Liu, H. Ding, Catal Sci Technol. 12 (2022) 6945-6991.
[8] L.F. Liotta, Appl. Catal. B Environ. 100 (2010) 403-412.
[9] H. Li, J. Yu, Y. Gong, N. Lin, Q. Yang, X. Zhang, Y. Wang, Sep. Purif. Technol. 307 (2023) 122716.
[10] A. Zhao, Y. Ren, H. Wang, Z. Qu, J. Environ. Sci. 127 (2023) 811-823.
[11] J. Cho, M. Kim, I. Yang, K.T. Park, C.H. Rhee, H.W. Park, J.C. Jung, J. Rare Earths. (2023)
[12] S. Vasala, M. Karppinen, Prog. Solid State Chem. 43 (2015) 1-36.
[13] J.E. Tasca, A.E. Lavat, M.G. González, J. Asian Ceram. Soc. 5 (2017) 235-241.
[14] X. Gao, Z. Jin, R. Hu, J.n. Hu, Y. Bai, P. Wang, J. Zhang, C. Zhao, J. Rare Earths. 39 (2021) 398-408.
[15] M. Wu, H. Li, S. Ma, S. Chen, W. Xiang, Sci. Total Environ. 795 (2021) 148904.
[16] J. Yang, S. Hu, L. Shi, S. Hoang, W. Yang, Y. Fang, Z. Liang, C. Pan, Y. Zhu, L. Li, J. Wu, J. Hu, Y. Guo, Environ. Sci. Technol. 55 (2021) 9243-9254.
[17] C. Feng, Q. Gao, G. Xiong, Y. Chen, Y. Pan, Z. Fei, Y. Li, Y. Lu, C. Liu, Y. Liu, Appl. Catal. B Environ. 304 (2022) 121005.
[18] M. Foroughipour, A. Nezamzadeh-Ejhieh, Chemosphere 334 (2023) 139019.
[19] E.E. Svensson, S. Nassos, M. Boutonnet, S.G. Järås, Catal. Today. 117 (2006) 484-490.
[20] R. Hu, R. Ding, J. Chen, J. Hu, Y. Zhang, Catal. Commun. 21 (2012) 38-41.
[21] K.L. Pan, G.T. Pan, S. Chong, M.B. Chang, J. Environ. Sci. 69 (2018) 205-216.
[22] Y. Wang, Y. Xue, C. Zhao, D. Zhao, F. Liu, K. Wang, D.D. Dionysiou, J. Chem. Eng. 300 (2016) 300-305.
[23] H. Roozbahani, S. Maghsoodi, B. Raei, A.S. Kootenaei, Z. Azizi, Korean J. Chem. Eng. 39 (2022) 586-595.
[24] A. Jahangiri, H. Pahlavanzadeh, H. Aghabozorg, Int. J. Hydrog. Energy, 37 (2012), 9977-9984.
[25] S. Maghsoodi, J. Towfighi, A. Khodadadi, Y. Mortazavi, J. Chem. Eng. 215-216 (2013) 827-837.
[26] K.R. Nemade, S.A. Waghuley, Int. J. Met. 2014 (2014) 389416.
[27] J. Fu, H.-y. Zhao, J.-r. Wang, Y. Shen, M. Liu, Int. J. Miner. Metall. 25 (2018) 950-956.
[28] SD Khairnar, MR Patil, VS Shrivastava, Iranian Journal of Catalysis 8(2), (2018), 143-150.
[29] A Yousefi, A Nezamzadeh-Ejhieh, Iran. J. Catal. 11(3), (2021), 247-259.
[30] R. Shaheen, J. Bashir, Solid State Sci. 12 (2010) 1496-1499.
[31] J. Li, R. Hu, J. Zhang, W. Meng, Y. Du, Y. Si, Z. Zhang, Fuel. 178 (2016) 148-154.
[32] A.E. Lavat, E.J. Baran, Vib Spectrosc. 32 (2003) 167-174.
[33] S. Li, Int. J. Ind. Chem. 10 (2019) 89-96.
[34] C. Li, B. Liu, Y. He, C. Lv, H. He, Y. Xu, J. Alloys Compd. 590 (2014) 541-545.
[35] A. Norouzi, A. Nezamzadeh-Ejhieh, Physica B 599, (2020), 412422.
[36] P. Kumar Yadav, T. Das, P. Mondal, Fuel. 302 (2021) 121233.
[37] K. Bakhtiari, A. Shahbazi Kootenaei, S. Maghsoodi, S. Azizi, S.M. Tabatabaei Ghomsheh, Ceram. Int. 48 (2022) 37394-37402.
[38] S. Cimino, L. Lisi, R. Pirone, G. Russo, M. Turco, Catal. Today. 59 (2000) 19-31.
[39] R. Ding, C. Li, L. Wang, R. Hu, Appl. Catal. A Gen. 464-465 (2013) 261-268.
[40] F. Touahra, A. Rabahi, R. Chebout, A. Boudjemaa, D. Lerari, M. Sehailia, D. Halliche, K. Bachari, Int. J. Hydrog. Energy. 41 (2016) 2477-2486.
[41] G. Chai, W. Zhang, L.F. Liotta, M. Li, Y. Guo, A. Giroir-Fendler, Appl. Catal. B Environ. 298 (2021) 120606.
[42] Z. Liu, L. Cheng, J. Zeng, X. Hu, S. Zhangxue, S. Yuan, Q. Bo, B. Zhang, Y. Jiang, J. Solid State Chem. 292 (2020) 121712.