Silver supported on mesoporous silica combination with H2O2: active, recyclable, and selective oxidation component for conversion of olefines to 1, 2-diols
الموضوعات : Iranian Journal of CatalysisShakiba Samadi 1 , Hadi Shafiei 2 , Davoud Soudbar 3 , Hassan Fathinejad 4
1 - Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
2 - Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
3 - Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
4 - Department of Chemistry, Farahan Branch, Islamic Azad University, Farahan, Iran
الکلمات المفتاحية: Silver, Mesoporous silica, selective oxidation, 1, 2-diol,
ملخص المقالة :
The selective oxidation of olefins is a key academic and industrial research challenge. Herein, silver was supported on mesoporous silica through a facile synthesis procedure, and characterized using various technics such as FT-IR, XRD, SEM, BET, and EDX. This efficient separable agent alongside aqueous H2O2 was applied to the oxidation of various olefines (1-octen, 1-hexene, cyclohexene, cyclooctene, styrene, and 1, 2-diphenylmethane) to 1, 2-diol under mild reaction conditions (65 ℃) with high conversion and excellent selectivity. The promoter exhibited excellent reusability and stability in the reaction medium.
[1] M. Hsien, H.-T. Sheu, T. Lee, S. Cheng, J.-F. Lee, J. Mol. Catal. A: Chem. 181 (2002) 189–200.
[2] K. Peng, F. Chen, X. She, C. Yang, Y. Cui, X. Pan, Tetrehedron Lett. 46 (2005) 1217–1220.
[3] M.-J. Fan, G.-Q. Li, Y.-M. Liang, Tetrehedron 62 (2006) 6782–6791.
[4] N. Takenaka, G. Xia, H. Yamamoto, J. Am. Chem. Soc. 126 (2004) 13198–13199.
[5] C.-M. Ho, W.-Y. Yu, C.-M. Che, Angew. Chem. Int. Ed. 43 (2004) 3303–3307.
[6] C. Döbler, G.M. Mehltretter, U. Sundermeier, M. Beller, J. Am. Chem. Soc. 122 (2000) 10289–10297.
[7] M.A. Reddy, L.R. Reddy, N. Bhanumathi, K.R. Rao, Org. Prep. Proc. Int. 34 (2002) 527–530.
[8] M. Sasidharan, P. Wu, T. Tatsumi, J. Catal. 209 (2002) 260–265.
[9] K. Lee, Y. Kim, S.B. Han, H. Kang, S. Park, W.S. Seo, J.T. Park, B. Kim, S. Chang, J. Am. Chem. Soc. 125 (2003) 6844–6845.
[10] A. Hartung, M.A. Keane, A. Kraft, J. Org. Chem. 72 (2007) 10235–10238.
[11] C.W. Jones, RSC, Cambridge, 1999.
[12] W.R. Sanderson, Pure Appl. Chem. 72 (2000) 1289–1304.
[13] J.M. Campos Martin, G. Blanco Brieva, J.L.G. Fierro, Angew. Chem. Int. Ed. 45 (2006) 6962–6984.
[14] J.-E. Bäckvall, Modern Oxidation Methods, Wiley-VCH, Weinheim, 2004.
[15] N. Mizuno, Modern Heterogeneous Oxidation Catalysis, Wiley-VCH, Weinheim, 2009.
[16] X. Cui, Z. Huang, A.P. van Muyden, Z. Fei, T. Wang, P.J. Dyson, Sci. Adv. 6(27) (2020) eabb3831.
[17] M. Hosseini-Sarvari, T. Ataee-Kachouei, F. Moeini, Mater. Res. Bull. 72 (2015) 98-105;
[18] T. Mitsudome, Y. Mikami, H. Funai, T. Mizugaki, K. Jitsukawa, K. Kaneda, Angew. Chem. Int. Ed. 47(1) (2008) 138-141;
[19] K.i. Shimizu, K. Ohshima, A. Satsuma, Chem.: Eur. J. 15(39) (2009) 9977-9980;
[20] G.M. Whitesides, M. Hackett, R.L. Brainard, J.P.P. Lavalleye, A.F. Sowinski, A.N. Izumi, S.S. Moore, D.W. Brown, E.M. Staudt, Organometallics 4(10) (1985) 1819-1830
[21] J.M. Pérez, R. Cano, M. Yus, D.J. Ramón, Eur. J. Org. Chem. 2012(24) (2012) 4548-4554;
[22] S. Pande, A. Saha, S. Jana, S Sarkar, M. Basu, M. Pradhan, A.K. Sinha, S. Saha, A. Pal and T. Pal, Org. lett. 10(22) (2008) 5179-5181.
[23] T. Mitsudome, Y. Mikami, H. Funai, T. Mizugaki, K. Jitsukawa, K. Kaneda, Angew. Chem. Int. Ed. 47(1) (2008) 138-141;
[24] S. Chakraborty, U. Gellrich, Y. Diskin‐Posner, G. Leitus, L. Avram, D. Milstein, Angew. Chem. Int. Ed. 56(15) (2017) 4229-4233;
[25] N. Deibl, R. Kempe, Angew. Chem. Int. Ed. 56(6) (2017) 1663-1666;
[26] M. Mastalir, M. Glatz, N. Gorgas, B. Stöger, E. Pittenauer, G. Allmaier, L.F. Veiros, K. Kirchner, Chem.: Eur. J. 22(35) (2016) 12316-12320;
[27] S. Elangovan, J. Neumann, J.-B. Sortais, K. Junge, C. Darcel, M. Beller, Nat. Commun. 7 (2016) 12641.
[28] H.G. Ghalehshahi, R. Madsen, Chem.Eur.J. 23(49) (2017) 11920-11926.
[29] E. Yazdani, A. Heydari, J. Organomet. Chem. 924 (2020) 121453.
[30] W. L. Dai, C. Yong, L. P. Ren, X. L. Yang, J. H. Xu, H. X. Li, H. Y. He, K. N. Fan, J. Catal. 228 (2004) 80-91.
[31] R. Yamamoto, Y. Sawayama, H. Shibahara, Y. Ichihashi, S. Nishiyama, S. Tsuruya, J. Catal., 234 (2005) 308-317.
[32] H. Y. Liu, D. Ma, R. A. Blackley, W. Z. Zhou, X. H. Bao, Chem. Commun., (2008) 2677-2679.
[33] M. V. Canamares, J. V. Garcia-Ramos, J. D. Gomez-Varga, C. Domingo, S. Sanchez-Cortes, Langmuir, 21 (2005) 8546-8553.
[34] P. L. Redmond, A. J. Hallock, L. E. Brus, Nano letters, 5 (2005) 131-135.
[35] H. J. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley, Nature, 384 (1996) 147–150.
[36] A. R. Hajipour, Z. Khorsandi, Appl. Organomet. Chem. 305 (2016) 256–261.
[37] A. R. Hajipour, Z. Khorsandi, H. Farrokhpour, RSC Adv. 6 (2016) 59124–59130.
[38] Q. Sun, N. A. Zorin, D. Chen, M. Chen, T. X. Liu, J. Miyake, D. J. Qian, Langmuir 26 (2010) 10259–10265.
[39] L. Han, H. Li, S. J. Choi, M. S. Park, S. M. Lee, Y. J. Kim, D. W. Park, Appl. Catal. A. 429 (2012) 67–72.
[40] Z. Sun, G. Cui, H. Li, Y. Tian, Sh. Yan, Colloids Surf. A Physicochem. Eng. Asp. 489 (2016) 142-153.
[41] Z. Sun, H. Li, D. Guo, J. Sun, G. Cui, Y. Liu, Y. Tian, S. Yan, J. Mater. Chem. C. 3 (2015) 4713-4722.
[42] L. L. Wang, B. Li, L. M. Zhang, L. G. Zhang, H. F. Zhao, Sens. Actuators, B, 171 (2012) 946-953.
[43] Z. B. Sun, D. Guo, L. Zhang, H. Z. Li, B. Yang, S. Q. Yan, J. Mater. Chem. B, 3 (2015) 3201-3210.
[44] C. F. Dong, X. L. Zhang, H. Cai, J. Alloy. Compd., 583 (2014) 267-271.
[45] B. Cao, Sh. Li, W. Kong, J. Guo, Z. Tian, G. Zhang, Inorg. Chem. Commun 121 (2020) 108227.
[46] R. Maggi, G. Martra, C. G. Piscopo, Ga. Alberto, G. Sartori, J. Catal 294 (2012) 19–28.
[47] D. Mandelli, M.C.A. van Vliet, R.A. Sheldon, U. Schuchardt, Appl Catal A Gen 219 (2001) 209–213.
[48] A. Aberkouks, A. A. Mekkaoui, B. Boualy, S. EL Houssame, M. Ait Ali, L. El Firdoussi, Mater. Today. 13 (2019) 453–457.