BaO/TiO2-ZrO2 as a green and efficient basic catalyst for Knoevenagel condensation reaction
الموضوعات : Iranian Journal of CatalysisRoozbeh Kalbasi 1 , Zohreh Shahzeidi 2 , Farzad Zamani 3
1 - Department of Chemistry, Shahreza Branch, Islamic Azad University, Shahreza 311-86145, Isfahan, Iran.
2 - Department of Chemistry, Shahreza Branch, Islamic Azad University, Shahreza 311-86145, Isfahan, Iran.
3 - Department of Chemistry, Shahreza Branch, Islamic Azad University, Shahreza 311-86145, Isfahan, Iran.
الکلمات المفتاحية: Solid base catalyst, BaO, TiO2-ZrO2, Knoevenagel condensation,
ملخص المقالة :
A simple and green synthetic strategy to prepare BaO/TiO2-ZrO2 as a solid base catalyst was reported. These materials with various amounts of BaO were prepared by the adsorption method. The physical and chemical properties of BaO/TiO2-ZrO2 were investigated by X-ray diffraction, X-ray fluorescence, specific surface area and BJH pore size distribution, FT-IR spectroscopy, scanning electron microscopy and energy dispersive spectra techniques. The catalytic performance of catalyst was determined for the Knoevenagel condensation reaction between carbonyl compounds and ethyl cyanoacetate in the presence of water as a solvent. The catalyst used for this synthetically useful transformation showed considerable level of reusability besides very good activity.
[1] K. Tanabe, W.F. Holderich, Appl. Catal. A: 181 (1999) 399-434.
[2] T. Baba, H. Yuasa, H. Handa, Y. Ono, Catal. Lett. 50 (1998) 83-85.
[3] S. Jaenicke, G.K. Chuah, X.H. Lin, X.C. Hu, Micropor. Mesopor. Mater. 35 (2000) 143-153.
[4] K. Akutu, H. Kabashima, T. Seki, H. Hattori, Appl. Catal. A: Gen. 247 (2003) 65-74.
[5] H. Wang, M. Wang, N. Zhao, W. Wei, Y. Sun, Catal. Lett. 105 (2005) 253-257.
[6] M. Ai, Appl. Catal. A: Gen. 288 (2005) 211-215.
[7] X. Liu, H. He, Y. Wang, S. Zhu, Catal. Commun. 8 (2007) 1107-1111.
[8] J.D. Bass, A. Solovyov, A.J. Pascall, A. Katz, J. Am. Chem. Soc. 128 (2006) 3737-3747.
[9] J.D. Bass, S.L. Anderson, A. Katz, Angew. Chem. Int. Ed. 42 (2003) 5219-5222.
[10] D.J. Macquarrie, R. Maggi, A. Mazzacani, G. Sartori, R. Sartorio, Appl. Catal. A: Gen. 246 (2003) 183-188.
[11] M. Etienne, A. Walcarius, Talanta 59 (2003) 1173-1188.
[12] X. Wang, K.S.K. Lin, J.C.C. Chan, S. Cheng, J. Phys. Chem. B 109 (2005) 1763-1769.
[13] B. Siebenhaar, B. Casagrande, M. Studer, H.U. Blaser, Can. J. Chem. 79 (2001) 566-578.
[14] N. Elazarifi, A. Ezzamarty, J. Leglise, L.–C. de Menorval, C. Moreau, Appl. Catal. A: Gen. 267 (2004) 235-240.
[15] D. Hullmann, G. Wendt, G. Ziegenbalg, Chem. Eng. Technol. 24 (2001) 147-150.
[16] M. Ghiaci, A. Abbaspur, R.J. Kalbasi, Appl. Catal. A: Gen. 287 (2005) 83-88.
[17] J.M. Miller, L.J. Lakshmi, J. Phys. Chem. 102B (1998) 6465-6470.
[18] J.M. Miller, D. Wails, J.S. Belelie, J. Chem. Soc. Faraday Trans. 94 (1998) 789-796.
[19] M. Colilla, F. Balas, M. Manzano, M. Vallet-Regí, Chem. Mater. 19 (2007) 3099-3101.
[20] M. Ghiaci, B. Rezaei, R.J. Kalbasi, Talanta 73 (2007) 37-45.
[21] S.A.M. Abdel-Hameed, M.A. Azooz, Ceram. International 35 (2009) 643-648.
[22] H.M. O’Bryan, J.R.J. Thomson J. Am. Ceram. Soc. 57 (1974) 522-526.
[23] A.S. Tenny, J. Wong, J. Chem. Phys. 56 (1972) 5516-5523.
[24] I. Ardelean, F. Ciorcas, M. Peteanu, I. Bratu, V. Ioncu, Mod. Phys. Lett. B. 14 (2000) 653-661.
[25] E.I. Kamitsos, M.A. Karakassides, G.D. Cryssikos, J. Phys. Chem. 91 (1987) 1073-1079.
[26] R.M. Kumbhare, M. Sridhar, Catal. Commun. 9 (2008) 403-405.
[27] W. Flitsch, S. Kahner-Grone, Chemische Berichte 115 (1982) 871-877.
[28] G.R. Krishnan, K. Sreekumar, Euro. J. Org. Chem. 28 (2008) 4763-4768.
[29] X. Fan, X. Hu, X. Zhang, J. Wang, Australian J. Chem. 57 (2004) 1067-1071.
[30] J.S. Yadav, B.V.S. Reddy, A.K. Basak, B. Visali, A.V. Narsaiah, K. Nagaiah, Euro. J. Org. Chem. 3 (2004) 546-551.
[31] R.J. Kalbasi, M. Kolahdoozan, A.R. Massah, K. Shahabian, Bull. Korean Chem. Soc. 31 (2010) 2618-2666.