Broiler Performance in Response to Phytate and Supplemented Phytase
الموضوعات :M.F. Khalid 1 , M. Hussain 2 , A.U. Rehman 3 , M.A. Shahzad 4 , M. Sharif 5 , Z.U. Rahman 6
1 - University of Agriculture, Faisalabad, Toba Tek Singh Campus, Pakistan
2 - Institute of Animal Nutrition and Feed Technology, UAF, Pakistan
3 - Institute of Animal Nutrition and Feed Technology, UAF, Pakistan
4 - Institute of Animal Nutrition and Feed Technology, UAF, Pakistan
5 - Institute of Animal Nutrition and Feed Technology, UAF, Pakistan
6 - Institute of Animal Nutrition and Feed Technology, UAF, Pakistan
الکلمات المفتاحية: pollution, Protein, digestibility, poultry, phytase, phosphorus, phytate,
ملخص المقالة :
Phosphorus (P) is a macro mineral in broiler nutrition. In growing broilers, besides its requirement for proper bone development, it is also involved in almost all metabolic processes. Poor P availability results in decreased productivity and poor health status.Phosphorus availability from plant derived feeds is affected by an anti-nutritional factor “phytate”, which forms a variety of insoluble salts with most of the minerals including P, calcium (Ca), magnesium, zinc (Zn) and copper (Cu) due to its reactive anion capability. So, phytate is responsible for considerable nutrient losses as vegetable sources form a major portion in broiler diet formulations. Phytate has also been reported to form complexes with protein and proteolytic enzymes (pepsin and trypsin). Mono-gastric animals lack endogenous phytase (an enzyme capable of hydrolyzing phytate bound P, Ca, protein and other nutrients), so phytate decreases the nutrient availability at the intestinal level in poultry. Application of phytase in poultry rations may liberate cations and other nutrients bound by phytate-P complexes resulting in improved production parameters and body structure characteristics in broilers. However, efficacy of supplemental phytase rests on its rate of application, Ca: P in ration, composition of diet, genotype and age of birds. Phytase could ensure the economical poultry production by the exploitation of inherent nutritional potential of feedstuffs. Some studies, however, showed that phytase does not degrade dietary phytate efficiently and thus the negative influence of phytate on protein digestibility is not completely removed by phytase supplementation. More focused researchon currently available phytase feed enzymes and their potentialimproved action by the simultaneous use of other exogenous enzymes, which complement their activity is recommended.
Abelson P.H. (1999). A potential phosphate crisis. Science. 283, 2015-2021.
Abugassa S. and Svensson O. (1990). Rickets induced by calcium or phosphate depletion. Int. J. Expt. Pathol. 71, 631-638.
Ahmad T., Rassol S., Sarwar M., Haq A. and Hasan Z. (2000). Effect of microbial phytase produced from a fungus Aspergillus niger on bioavailability of phosphorus and calcium in broiler chicken. Anim. Feed Sci. Technol.83, 103-114.
Akyurek H., Senkoylu N. and Ozduven M.L. (2005). Effect of microbial phytase on growth performance and nutrient digestibility in broiler. Pak. J. Nutr. 4, 22-26.
Aoyagi S. and Baker D. (1995). Effect of microbial phytase and 1, 25-dihydroxycholecalciferol on dietary copper utilization in chicks. Poult. Sci. 74, 121-126.
Averill H.P. and King C.G. (1926). The phytin content of food stuffs. J. Am. Chem. Soc. 48, 724-728.
Baruah K., Sahu N.P., Pal A.K. and Debnath D. (2004). Dietary Phytase: An ideal approach for a cost effective and low-polluting aquafeed. NAGA, World Fish Center Quarterly. 27, 15-19.
Bhaskaram C. and Reddy V. (1979). Role of dietary phytate in the aetiology of nutritional rickets. Indian J. Med. Res. 69, 265-270.
Biehl R.R., Baker D.H. and Deluca H.F. (1995). Hydroxylated cholecalciferol compounds act additively with microbial phytase to improve phosphorus, zinc and manganese in chicks fed soy-based diets. J. Nutr. 125, 2407-2416.
Boland D., Gamer G.B. and O‘Dell B.L. (1975). Identification and properties of phytate in cereal grains and oil seed products. J. Agrie. Food Chem. 23, 1186-1189.
Brenes A., Slominski B.A., Marquardt R.R., Guenter W. and Viveros A. (2003). Effect of enzyme addition on the digesti-bilities of cell wall polysaccharides and oligosaccharides from whole, dehulled, and ethanol-extracted white lupins in chickens. Poult. Sci. 82,1716-1725.
Broz J., Oldane P., Perrin-Voltz A.H., Rychen G., Schulze J. and Nuches C.S. (1994). Effect of supplemental phytase on performance and phosphorus utilization in broiler Chickens fed low phosphorus diet without addition of inorganic phosphorus. Br. Poult. Sci. 35, 273-280.
Bruce H.M. and Callow R.K. (1934). Cereals and rickets. The role of inositol hexaphosphoric acid. Biochem. J. 28, 517-528.
Cabahug S., Ravindran V., Bryden W.L. and Selle P.H. (1999). Response of broilers to microbial phytase supplementation as influenced by dietary phytic acid and non-phytate phosphorus levels. I. Effects on broiler performance and toe ash content. Br. Poult. Sci. 40, 660-666.
Carmovale E., Lugaro E. and Lombardi-Boccia G. (1988). Phytic acid in faba bean and pea: effect on protein availability. Cereal. Chem. 65, 114-117.
Cawley R.W. and Mitchell T.A. (1968). Inhibition of wheat alpha-amylase by bran phytic acid. J. Sci. Food Agric. 19, 106-110.
Centeno C., Arija I., Viveros A. and Brenes A. (2007). Effects of citric acid and microbial phytase on amino acid digestibility in broiler chickens. Br. Poult. Sci. 48, 469-479.
Coon C.N. (2002). Feeding egg type replacement pullet. Pp. 267-285 In Commercial Chicken and Egg Production. D.D Bell and W.D Weaver Eds. Cluwer Adademic Publishers, Dortthirty Recht. Netherland.
Cosgrove D.J. (1966). The chemistry and biochemistry of inositol polyphosphates. Rev. Pure. Appl. Chem. 16, 209-224.
Cowieson A.J. and Ravindran V. (2007). Effect of phytic acid and microbial phytase on the flow and amino acid composition of endogenous protein at the terminal ileum of growing broiler chickens. Br. J. Nutr. 98, 745-752.
Cowieson A.J., Acamovic T. and Bedford M.R. (2004). The effects of phytase and phytic acid on the loss of endogenous amino acids and minerals from broiler chickens. Br. Poult. Sci. 45, 101-108.
Cowieson A.J. and Adeola O. (2005). Carbohydrases, protease, and phytase have an additive beneficial effect in nutritionally marginal diets for broiler chicks. Poult. Sci. 85, 1860-1867.
Cowieson A.J., Ravindran V. and Selle P.H. (2008). Influence of dietary phytic acid and source of microbial phytase on ileal endogenous amino acid flows in broiler chickens. Poult. Sci. 87, 2287-2299.
Davies N.T. and Reid H. (1979). An evaluation of the phytate, zinc, copper, iron and manganese contents of and zinc availability form soya-based textured-vegetable-protein meat substitutes or meat-extenders. Br. J. Nutr. 41, 579-588.
Denbow D.M., Ravindran V., Kornegay E.T., Yi Z. and Hulet R.M. (1995). Improving phosphorous availability in soyabean meal for broilers by supplemental phytase. Poult. Sci. 74, 1831-1842.
Edwards H.M. (1966). The effect of protein source in the diet of Zn65 absorption and excretion by chickens. Poult. Sci. 45, 421-422.
Edwards H.M. (1993). Dietary 1, 25-dihydroxychole calciferolsupplementation increases natural phytate phosphorus utilization in chickens. J. Nutr. 123, 567-577.
Eeckhout W. and de Paepe M. (1994). Total phosphorus, phytate-phosphorus and phytase activity in plant feedstuffs. Anim. Feed Sci. Tech. 47, 19-29.
Engelen A.J., van der Heeft F.C., Randsdorp P.H.G. and Smit E.L.C. (1994). Simple and rapid determination of phytase activity. J. AOAC Int. 77, 760-764.
Evans W.J. and Pierce A.G. (1982). Interaction of phytic acid with the metal ions, copper (II), cobalt (II). iron (III), magnesium (II), and manganese (II). J. Food Sci. 47, 1014-1015.
Farrell D.J., Martin E., Paepe J.J., Bongarts M., Sudaman A. and Thomson G. (1993). The beneficial effects of microbial phytase ion diets of broiler chickens and ducklings. J. Anim. Physiol. Anim. Nutr. 69, 278-286.
Francesch M. and Geraert P.A. (2009). Enzyme complex containing carbohydrases and phytase improves growth performance and bone mineralization of broilers fed reduced nutrient corn-soybean-based diets. Poult. Sci. 88, 1915-1924.
Gifford S.R. and Clydesdale F.M. (1990). Interactions among calcium, zinc and phytate with three protein sources. J. Food Sci. 55, 1720-1724.
Godoy S., Chicco C., Meschy F. and Requena F. (2005). Phytic phosphorus and phytase activity of animal feed ingredients. Interciencia. 30, 24-28.
Graf E. (1986). Phytic Acid: Chemistry and Applications. The Pilatus Press. The Univ. California.
Greiner R., Konietzny U. and Jany K.D. (1993). Purification and characterization of two phytases from Escherichia coli. Arch. Biochem. Biophysiol. 303, 107-113.
Guo Y., Shi Y., Li F., Chen J., Zhen C. and Hao Z. (2009).Effects of sodium gluconate and phytase on performance and bone characteristics in broiler chickers.Anim. Feed Sci. Technol. 150,270-282.
Harland B.H. and Morris E.R. (1995). Phytate: a good or a bad food component. Nutr. Res. 15, 733-754.
Hartig T. (1855). Uber das Klebermehl. Bot. Zeit. 13, 881-885.
Hatten H.F., Ingram D.R. and Pittman S.T. (2001). Effect of phytase on production parameters and nutrient availability in broilers and laying hens: a review.J. Appl. Poul. Res. 10, 274-278.
Johnston S.L. and Southern L.L. (2000). The effect of varying mixes uniformity (stimulated) of phytase on growth performance, mineral retention, and bone mineralization in chicks. Poult. Sci. 79, 1485-1490.
Karim A. (2006). Responses of broiler chicks to non-phytate phosphorus levels and phytase supplementation. Int. J. Poult. Sci. 5, 251-254.
Ketola H.G. and Harland B.F. (1993). Influence of phosphorus in rainbow trout diets on phosphorus discharges in effluent water. Trans. American Fish. Soc. 122, 1120-1126.
Kies A.K., Van Hemert K.H.F. and Saucer W.C. (2001). Effect of phytase on protein and amino acid digestibility and energy retention. W. Poult. Sci. 57, 109-126.
Kirby L.K. and Nelson T.S. (1988). Total and phytate phosphorus content of some feed ingredients derived from grains. Nutr. Reports. Int. 37, 277-280.
Kornegay E.T. (1996a). Nutritional, environmental and economic considerations for using phytase in pig and poultry diets. Pp. 277-302 in Nutrient Management of Food Animals to Enhance and Protect the Environment, Kornegay, E.T. Ed. CRC Press, Boca Raton, FL.
Kornegay E.T., Denbow D.M. and Zhang Z. (1999). Influence of microbial phytase supplementation of a low protein/amino acid diet on performance, ileal digestibility of protein and amino acids, and carcass measurements of finishing broilers. Pp. 557-572 in Phytase in Animal Nutrition and Waste Management M.B. Coelho and E.T. Kornegay Eds. BASF Corporation, Mount Olive, NJ.
Kornegay E.T., Ravindran V. and Denbow D.M. (1996). Improving phytate phosphorus availability in corn and soyabean meal for broilers using microbial phytase and calculation of phosphorus equivalency values for phytase. Poult. Sci. 75, 240-249.
Krieger C.H., Bunkfeldt R. and Steenbock H. (1940). Cereals and rickets XI. Calcium phytate as a source if calcium. J. Nutr. 20, 15-18.
Kundu B., Biswas P., Rajendran D. and Dandopath S.K. (2000). Effect of supplementation of phytase enzyme and gradual replacement of dicalcium phosphate on the performance of commercial broker chicken. Pp. 119-128 in Proc. III Biennial conference of Animal Nutrition Association, Hisar, India.
Lease J.G. (1966). The effect of autoclaving sesame meal on its phytic acid content and on the availability of its zinc to the chicks. Poult. Sci. 45, 237-241.
Leeson S. (1993). Recent advances in fat utilization by poultry. Pp. 170-181 in Recent Advance in Animal Nutrition in Australia. D.J. Farrell, Ed. University of New England. Armidale, Australia.
Lim H.S., Namkung H., Um J.S., Kang K.R., Kim B.S. and Paik I.K. (2000). The effect of phytase supplementation on the performance of broiler chickens fed diets with different levels of non-phytate phosphorus. Asi. Austral. J. Anim. Sci. 14, 250-257.
Liu L., Michael l., Mishchenko W. and Arnott P. (2008). A study of radiative properties of fractal soot aggregates using the superposition T-matrix method. J. Quant. Spectrosco. Radial. Transfer. 109, 2656-2663.
Lott J.N.A., Ockenden I., Raboy V. and Batten G.D. (2000). Phytic acid and phosphorus in crop seeds and fruit: a global estimate. Seed. Sci. Res. 10, 11-33.
Maddaiah V.T., Kumick A.A., Hullet B.J. and Reid B.L. (1964). Nature of intestinal phytase activity. Proc. of the Society of Experimental Biology and Medicine. 115, 1054-1057.
McWard G.W. (1969). Effect of phytic acid and ethylenediamine tetra acetic acid (EDTA) on the chick requirement for magnesium. Poult. Sci. 48, 791-794.
Mellanby A. (1949). The rickets-producing and anti-calcifying action of phytate. J. Physiol. 109, 488-533.
Mitchell R.D. and Edwards H.M. (1996). Effect of phytase and 1, 25-dihydroxycholecalciferol on phytate utilization and the quantitative requirement for calcium and phosphorus in young broiler chickens. Poult. Sci. 75, 95-110.
Mohanna C. and Nys N. (1999). Changes in zinc and manganese availability in broilers chicks induced by vegetal and microbial phytase. Anim. Feed Sci. Technol. 77, 241-253.
Mroz Z. (1998). Phytase does improve energy, protein, and amino acid utilization. Institute for animal scienceand health, IDTNO animal nutrition, lelystad, The Netherlands. J. Anim. Sci. 80, 123-129.
Mullaney E.J., Daly C.B. and Ullah A.H.J. (2000). Advances in phytase research. Adv. Appl. Microbiol. 47, 157-199.
Mullaney E.J. and Ullah A.H. (2003). Phytases comprises structurally different classes of enzymes. Biochem. Biophys. Res. Com. 312, 179-184.
Namkung H. and Leeson S. (1999). Effect of phytase enzyme on dietary nitrogen-corrected apparent metabolizable energy and the ideal digestibility of nitrogen and amino acids. Poult. Sci. 78, 1317-1319.
Nelson T.S., Ferrara L.W. and Storer N.L. (1968). Phytate phosphorus content of feed ingredients derived from plants. Poult. Sci. 47, 1372-1374.
Nelson T.S., Shieh T.R., Wodzinski R.J. and Ware J.H. (1971). Effect of supplemental phytase on the utilization of phytate phosphorus by chicks. J. Nutr. 101, 1289-1294.
Newkirk R.W. and Clasen H.L. (1995). Nutritional impact of canola meal phytate in broiler chicks. Poult. Sci. 74, 14-19.
NRC. (1994). Nutrient Requirements of Poultry, 9th Rev. Ed. National Academy Press, Washington, DC.
Oberleas D. and Harland B.F. (1996). Impact of phytate on nutrient availability. Pp. 211-219 in Phytase in Animal Nutrition and Waste Management. M.B. Coelho and E.T. Kornegay Eds. BASF Corporation, Mount Olive, NJ.
O’Dell B.L. (1962). Mineral availability and metal binding constituents of the diet. Pp. 77-82 in Proc. The Cornell Nutrition Conference of Feed Manufacturers, Ithaca, New York.
O’Dell B.L. (1979). Effect of soy protein on trace mineral availability. Pp. 187-207 in Soy Protein and Human Nutrition, New York, Academic Press.
Qian H., Kornegay E.T. and Denbow D.W. (1995). Utilization of phytate phosphorus and calcium as influenced by microbial phytase, vitamin D3 and the calcium: total phosphorus ratios in broiler diets. Poult. Sci. 74, 126-131.
Qian H., Kornegay E.T. and Denbow D.W. (1996). Phosphorus equivalence of microbial phytase in turkeys diets as influenced by calcium to phosphorus ratios and phosphorus levels. Poult. Sci. 75, 69-81.
Okubo K., Myers D.V and Iacobucci G.A. (1976). Binding of phytic acid to glycinin. Cereal. Chem. 53, 513519.
Onyango E.M., Bedford M.R. and Adeola O. (2005). Phytase activity along the digestive tract of the broiler chick: A comparative study of an Escherichia coli-derived and Peniophora lycii phytase. Can. J. Anim. Sci. 85, 61-68.
Panda A.K., Rao S.V.R., Raju M.V.L.N., Gauja S.S. and Bhanja S.K. (2007). Performance of broiler chickens fed low non phytate phosphorus diets supplemented with microbial phytase. Poult. Sci. 44, 258-264.
Perney K.M., Cantor A.H., Straw M.L. and Herkelman K.L. (1993). The effect of dietary phytase on growth performance and phosphorus utilization of broiler chicks. Poult. Sci. 72, 2106-2114.
Phillippy B.Q. and Johnston M.R. (1985). Determination of phytic acid in foods by ion chromatography with postcolumn derivatization. J. Food Sci. 50, 541-542.
Pillai P.B., O‘Conner, D.T., Owens C.M. and Emmert J.L. (2006). Efficacy of an Escherichia coli phytase in broilers fed adequate or reduced phosphorus diets and its effect on carcass characteristics. Poult. Sci. 85, 1737-1745.
Plumstead P.W., Leytem A.B. and Maguire R.O. (2008). Interaction of calcium and phytate in broiler diets. Effects on apparent prececal digestibility and retention of phosphorus. Poult. Sci. 87, 449-458.
Prattley C.A., Stanley D.W., Smith T.K. and Van De Voort F.R. (1982). Protein-phytate interactions in soybeans. Ill. The effect of protein-phytate complexes on zinc bioavailability. J. Food Biochem. 6, 273-278.
Rajendran S. and Prakash V. (1993). Kinetics and thermodynamics of the mechanism of interaction of sodium phytate with globulin. Biochem. 32, 3474-3478.
Ravindran V. (1995). Phytases in poultry nutrition. An overview. Proc. Aust. Poult. Sci. Symp. 7, 135-139.
Ravindran V., Bryden W.L. and Kornegay E.T. (1995a). Phytates: occurrence, bioavailability and implications in poultry nutrition. Poult. Avi. Biol. Rev. 6, 125-143.
Ravindran V., Carbahug S., Ravindran G., Selle P.H. and Bryden W.L. (2000). Response of broiler chickens to microbial phytase supplementation as influenced by dietary phytic acid and non-phytate phosphorous levels. II. Effects on apparent metabolisable energy, nutrient digestibility and nutrient retention. Br. Poult. Sci. 41, 193-200.
Ravindran V., Kornegay E.T., Denbow D.M., Yi Z. and Hulet R.M. (1995b). Response of turkey poults to tiered levels of Natuphos® phytase added to soyabean meal-based semi-purified diets containing three levels of nonphytate phosphorus. Poult. Sci. 74, 1843-1854.
Ravindran V., Morel P.C.H., Partridge G.G., Hruby M. and Sands J.S. (2006). Influence of an E. coli-derived phytase on nutrient utilization in broiler starter fed diets containing varying concentrations of phytic acid. Poult. Sci. 85, 82-89.
Ravindran V., Ravindran G. and Sivalogan S. (1994). Total and phytate phosphorus contents of various foods and feedstuffs of plant origin. Food Chem. 50, 133-136.
Ravindran V., Selle P.H., Ravindran G., Morel P.C.H., Kies A.K. and Bryden W.L. (2001). Influence of supplemental microbial phytase on the performance, apparent metabolizable energy, and ileal amino acid digestibility of broilers fed a lysine-deficient diet. Poult. Sci. 80, 338-344.
Reddy N.R., Sathe S.K. and Salunkhe D.K. (1982). Phytates in legumes and cereals. Adv. Food Res. 28, 1-9.
Rojas S.W. and Scott J.L. (1969). Factors affecting the nutritive value of cottonseed meal as a protein source for chick diets. Poult. Sci. 48, 819-834.
Roland D.A. (2006). Comparison of nathuphos and phyzyme as phytase sources for commercial layers fed corn-soy diet. Poult. Sci. Assoc. Inc. 22, 102-108.
Sandberg A.S., Larsen T. and Sandstr Gm B. (1993). High dietary calcium level decreases colonic phytate degradation in pigs fed a rapeseed diet. J. Nutr. 123, 559-566.
Schoner F.J., Hoppe P.P., Schwarz G. and Wiesche H. (1993). Effect of microbial phytase and inorganic phosphate in broiler chickens: performance and mineral retention at various calcium levels. J. Physiol. Anim. Nutr. 69, 235-244.
Sebastian S., Touch Burn S.P. and Chavez E.R. (1998). Implications of phytic acid and supplemented microbial phytase in poultry nutrition: a review. W. Poult. Sci. 54, 27-47.
Sebastian S., Touchburn S.P. and Chavez E.R. (1994). Enhancement of mineral utilization and growth performance of broilers chickens by microbial phytase supplementation of a corn-soybean meal diet. Pp. 91-102 in Proc. xx World’s Poultry Congress, World’s Poultry Science Journal Association, New Delhi, India.
Sebastian S., Touchburn S.P., Chavez E.R. and Lague P.C. (1996a). The effects of supplemental microbial phytase on the performance and utilization of dietary calcium, phosphorus, copper and zinc in broiler chickens fed corn-soyabean diets. Poult. Sci. 75, 729-736.
Sebastian S., Touchburn S.P., Chavez E.R. and Lague P.C. (1997). Apparent digestibility of protein and amino acids in broiler chickens fed a corn-soybean diet supplemented with microbial phytase. Poult. Sci. 76, 1760-1769.
Sebastian S., Touchburn S.P., Chavez E.R. and Lague P.C. (1996b). Efficacy of supplemental microbial phytase at different dietary calcium levels on growth performance and mineral utilization of broiler chickens. Poult. Sci. 75, 1516-1523.
Selle P.H., Ravindran V., Caldwell R.A. and Bryden W.L. (2000). Phytate and phytase: consequences for protein utilization. Nutr. Res. Rev. 13, 255-278.
Selle P.H., Ravindran V., Bryden W.L. and Scott T. (2006). Influence of dietary phytate and exogenous phytase on amino acid digestibility in poultry. J. Poult. Sci. 43, 89-103.
Selle P.H., Ravindran V., Ravindran G. and Bryden W.L. (2007). Effect of dietary lysine and microbial phytase on growth performance and nutrient utilization of broiler chickens. Asi. Aust. J. Anim. Sci. 20, 1100-1107.
Selle P.H., Walker A.R. and Bryden W.L. (2003). Total and phytate-phosphorus contents and phytase activity of Australian sourced feed ingredients for pigs and poultry. Aust. J. Expt. Agric. 45, 475-479.
Shieh T.R. and Ware J.H. (1968). Survey of microorganisms for the production of extracellular phytase. Appl. Microbiol. 16,1348-1351.
Simons P.C.M., Versteegh H.A.J., Jongbloed A.W., Kemme P.A., Slump P., Bos K.D., Wolters M.G.E., Beudeker R.F. and Verschooor G.J. (1990). Improvement of phosphorus availability by microbial phytase in broilers and pigs. Br. J. Nutr. 64, 525-540.
Singh J. and Sikka S.S. (2006). Effect of phytase supplementation at different Ca:P ratios of the growth performance of broiler chicks. Ind. J. Poult. Sci. 41, 159-164.
Singh P.K. and Khatta V.K. (2002). Phytase supplementation for economic and eco-friendly broiler production. J. Eco. Physiol. 5, 117-121.
Singh P.K. and Khatta V.K. (2003a). Effect of phytase supplementation on the performance of broiler chickens fed wheat based diets. Ind. J. Anim. Nutr. 20, 57-62.
Singh P.K. and Khatta V.K. (2003b). Effect of phytase supplementation on the broiler production. Poult. Plan. 4, 13-14.
Singh P.K. and Khatta V.K. (2004). Economics of broilers raised on phytase supplemented diets. Ind. J. Anim. Res. 10, 121-124.
Singh P.K., Khatta V.K. and Thakur R.S. (2003a). Effect of phytase supplementation in maize based diet on growth performance and nutrients utilization of broiler chickens. Ind. J. Anim. Sci. 73, 455-458.
Singh P.K., Khatta V.K., Thakur R.S., Dey S. and Sangwan M.L. (2003b). Effects of phytase supplementation on the performance of broiler chickens fed maize and wheat based diets with different levels of non-phytate phosphorus. Asi. Austral. J. Anim. Sci. 16, 1642-1649.
Scott M.L., Neshim M.C. and Young R.J. (1982). Nutrition of the Chicken. M.L. Scott and Associates Ithaca NY.
Steiner T., Mosenthin R., Zimmermannb B., Greiner R. and Roth S. (2007). Distribution of phytase activity, total phosphorus and phytate phosphorus in legume seeds, cereals and cereal by-products as influenced by harvest year and cultivar. Anim. Feed Sci. Technol. 133,320-324.
Suzuki U., Yoshimura K. and Takaishi M. (1907). Uber ein enzym “phytase” das anhydro-oxy-methylendiphosphosaure spaltet. Coll. Agric. Bull. Tokyo. Imp. Univ. 7, 503-505.
Thompson L.U. (1988). Antinutrients and blood glucose. Food Technol. 42, 123-131.
Thompson L.U. and Yoon J.H. (1984). Starch digestibility as affected by polyphenols and phytic acid. J. Food Sci. 49, 1228-1229.
Vinil S.P., Kadirvelan C., Thirumalai S., Valli S. and Chandrabose B. (2000). The role of phytase and other enzymes in augmenting the bioavailability of nutrients in broilers. Pp. 97 in Proc. xx Annual Conference of Indian Poultry Science Association, Chennai, India.
Viveros A., Centeno C., Brenes A., Canales R. and Lozano A. (2000). Phytase and acid phosphatase activities in plant feedstuffs. J. Agric. Food Chem. 48, 4009-4013.
Waldroup P.W. (1999). Nutritional approaches to reducing phosphorus excretion in poultry. Poult. Sci. 78, 683-691.
Wise A. (1983). Dietary factors determining the biological activity of phytates. Nutr. Abstr. Rev. Clin. Nutr. 53, 791-806.
Wodzinski R.J. and Ullah A.H.J. (1996). Phytase. Adv. Appl. Microbiol. 42, 263-303.
Yan F. and Waldroup P.W. (2006). Nonphytate phosphorus requirement and phosphorus excretion of broiler chicks fed diets composed of normal or high available phosphate corn as influenced by phytase supplementation and vitamin D source. Int. J. Poult. Sci. 5, 683-228.
Yi Z., Kornegay E.T. and Denbow D.M., (1996a). Effect of microbial phytase on nitrogen and amino acid digestibility and nitrogen retention of turkey poults fed corn-soybean meal diets. Poult. Sci. 75, 979-990.
Yi Z., Kornegay E.T. and Denbow D.M. (1996b). Supplemental microbial phytase improves the zinc utilization in broilers. Poult. Sci. 75, 540-546.
Yi Z., Kornegay E.T. and Meguirk A. (1994). Replacement value of inorganic phosphorus by microbial phytase for pigs and poultry. J. Anim. Sci. 72, 330-336.
Yoon J.H., Thompson L.U. and Jenkins D.J.A. (1983). The effect of phytic acid on in vitro rate of starch digestibility and blood glucose response. Am. J. Clin. Nutr. 38, 835-842.
Zanini S.F. and Sazzad M.H. (1999). Effect of microbial phytase on growth and mineral utilization in broiler fed on maize soyabean based diets. Br. Poult. Sci. 40, 348-352.
Zhang X., Roland K.D.A., Mcdaniel G.R. and Rao S.K.M. (1999). Effect of natuphos® phytase supplementation to feed on performance and ileal digestibility of protein and amino acids in broilers. Poult. Sci. 78, 1567-1572.