Morus nigra Fruit Extract Safeguards Frozen Thawed Bovine Sperm Parameters
الموضوعات :S. Suleman 1 , M.A. Kanwal 2 , R. Ali 3 , N. Kanwal 4 , S. Yasmeen 5 , M.Y. Mehmood 6 , S. Siddique 7 , S.N. Ahmad 8 , A. Younis 9 , I. Inayat 10 , K. Raees Ahmad 11
1 - Government Associate College (for Women), Mochh, Mianwali, Punjab, Pakistan
2 - Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
3 - Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
4 - Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
5 - Government College University, Faisalabad, Pakistan
6 - Riphah College of Veterinary Sciences, Lahore, Pakistan
7 - Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
8 - Department of Zoology, University of Chakwal, Chakwal, Pakistan
9 - Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
10 - Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
11 - Government Ambala Muslim Graduate College, Sargodha, Pakistan
الکلمات المفتاحية: semen quality, Oxidative stress, cryopreservation, cryo-injuries, <i>Morus nigra</i>,
ملخص المقالة :
This study explored the effect of Morus nigra fruit extract (MFE) on microanatomical and physiological parameters of cryopreserved bovine sperms. Three ejaculates were collected on weekly basis, from five fertile bulls. Each semen sample was mixed with dilution medium (DM) (1:2 v/v), centrifuged (32 g) for 10 minutes to pore away the upper-half of the mixture. The remaining material was then extended (1:4 ratios) with standard cryopreservation extender (SCE). Three aliquots (0.3 mL) from this extended sample were further extended with 0.7 mL pure SCE (control group), 0.7 mL SCE containing 3% MFE (MFE-3 group) and 0.7 mL SCE containing 6% MFE (MFE-6 group) respectively to attain final dilutions (25 times dilution of fresh semen ejaculate, containing approximately 1836.5 ± 85.23 million sperms per mL). From each final dilution (0.1 mL) sample was directly analyzed for semen quality parameters (SQPs) and rest of the material was placed in liquid nitrogen for 24 hrs for post thaw study of the SQPs and in-vitro fertilizability. Results revealed substantial improvement in sperm membrane integrity, motility, and fertilizability in MFE-3 and MFE-6 against SCE group. Likewise, significantly high mean percent number of progressively motile sperms and sperms showing 20 µ/sec or above velocity both before and after cryopreservation, were observed in MFE-6 and MFE-3 groups as compared to SCE. These findings show protective effects of MFE for bovine spermatozoa against cryoinjuries and the post thawed oxidative stress.
Aitken R.J. and Drevet J.R. (2020). The importance of oxidative stress in determining the functionality of mammalian spermatozoa: A two-edged sword. Antioxidants. 9(2), 111-116.
Aitken R.J. (2017). Reactive oxygen species as mediators of sperm capacitation and pathological damage. Mol. Reprod. Dev. 84(10), 1039-1052.
Arando A., Delgado J.V., Fernández-Prior A., León J.M., Bermúdez-Oria A., Nogales S. and Pérez-Marín C.C. (2019). Effect of different olive oil-derived antioxidants (hydroxytyrosol and 3, 4-dihydroxyphenylglycol) on the quality of frozen-thawed ram sperm. Cryobiology. 86, 33-39.
Bibi R., Tariq A., Mussarat S., Niaz Khan S., Rahman H., Abd Allah E.F., Ullah R. and Adnan M. (2017). Ethnomedicinal, phytochemical and antibacterial activities of medicinal flora of Pakistan used against Pseudomonas aeruginosa-A review. Pakistan J. Pharm. Sci. 30(6), 2285-2300.
Bollwein H. and Bittner L. (2018). Impacts of oxidative stress on bovine sperm function and subsequent in vitro embryo development. Anim. Reprod. 15, 703-710.
Bui D., Sharma R., Henkel R. and Agarwal A. (2018). Reactive oxygen species impact on sperm DNA and its role in male infertility. Andrologia. 50(8), 1-10.
Craig L.B., Brush R.S., Sullivan M.T., Zavy M.T., Agbaga M.P. and Anderson R.E. (2019). Decreased very long chain polyunsaturated fatty acids in sperm correlates with sperm quantity and quality. J. Assist. Reprod. Genet. 36(7), 1379-1385.
De Carvalho Tavares I.M., Sumere B.R., Gómez-Alonso S., Gomes E., Hermosín-Gutiérrez I., Da-Silva R. and Lago-Vanzela E.S. (2020). Storage stability of the phenolic compounds, color and antioxidant activity of jambolan juice powder obtained by foam mat drying. Food Res. Int. 128, 108750.
Del Prete C., Stout T., Montagnaro S., Pagnini U., Uccello M., Florio P., Ciani F., Tafuri S., Palumbo V., Pasolini M.P. and Cocchia N. (2019). Combined addition of superoxide dismutase, catalase and glutathione peroxidase improves quality of cooled stored stallion semen. Anim. Reprod. Sci. 210, 45-54.
Gadani B., Bucci D., Spinaci M., Tamanini C. and Galeati G. (2017). Resveratrol and Epigallocatechin-3-gallate addition to thawed boar sperm improves in vitro fertilization. Theriogenology. 90, 88-93.
Ghosh P., PRadha N., Mishra S., Patel A.S. and Kar A. (2017). Physicochemical and nutritional characterization of jamun (Syzygiumcuminii). Curr. Res. Nutr. Food Sci. 5(1), 25-35.
Grötter L.G., Cattaneo L., Marini P.E., Kjelland M.E. and Ferré L.B. (2019). Recent advances in bovine sperm cryopreservation techniques with a focus on sperm post-thaw quality optimization. Reprod. Domest. Anim. 54(4), 655-665.
Gu N.H., Zhao W.L., Wang G.S. and Sun F. (2019). Comparative analysis of mammalian sperm ultrastructure reveals relationships between sperm morphology, mitochondrial functions and motility. Reprod. Biol. Endocrinol. 17(1), 1-12.
Iqbal S., Riaz A., Naz S., Rashid M.I., Andrabi S.M. and Ahmad N. (2019). Antioxidant enzymes profile during cryopreservation of niliravi buffalo bull spermatozoa (Bubalus bubalis). J. Anim. Plant Sci. 29, 1800-1802.
Koyuncu F., Çetinbas M. and Erdal İ. (2014). Nutritional constituents of wild-grown black mulberry (Morusnigra L.). J. Appl. Bot. Food Qual. 87, 93-96.
Krishna P.G.A., Sivakumar T.R., Jin C., Li S.H., Weng Y.J., Yin J., Jia J.Q., Wang C.Y. and Gui Z.Z. (2018). Antioxidant and hemolysis protective effects of polyphenol-rich extract from mulberry fruits. Pharmacogn. Mag. 14(53), 103-109.
Latos-Brozio M. and Masek A. (2019). Structure-activity relationships analysis of monomeric and polymeric polyphenols (quercetin, rutin and catechin) obtained by various polymerization methods. Chem. Biodiver. 16(12), e1900426.
Lee M.T., Lin W.C., Yu B. and Lee T.T. (2017). Antioxidant capacity of phytochemicals and their potential effects on oxidative status in animals-A review. Asian-Australasian J. Anim. Sci. 30(3), 299-308.
Len J.S., Koh W.S.D. and Tan S.X. (2019). The roles of reactive oxygen species and antioxidants in cropreservation. Biosci. Rep. 39(8), 1-11.
Lim S.H. and Choi C.I. (2019). Pharmacological properties of Morusnigra L. (black mulberry) as a promising nutraceutical resource. Nutrients. 11(2), 437-542.
Lone S.A., Prasad J.K., Ghosh S.K., Das G.K., Balamurugan B., Sheikh A.A., Katiyar R. and Verma M.R. (2016). Activity of enzymatic antioxidants and total antioxidant capacity in seminal plasma of murrah bulls during cryopreservation. J. Anim. Res. 6(3), 405-410.
Malo C., Grundin J., Morrell J.M. and Skidmore J.A. (2019). Individual male dependent improvement in post-thaw dromedary camel sperm quality after addition of catalase. Anim. Reprod. Sci. 209, 106-118.
Moraes C.R. and Meyers S. (2018). The sperm mitochondrion: Organelle of many functions. Anim. Reprod. Sci. 194, 71-80.
Pervaiz T., Songtao J., Faghihi F., Haider M.S. and Fang J. (2017). Naturally occurring anthocyanin, structure, functions and biosynthetic pathway in fruit plants. J. Plant Biochem. Physiol. 5(2), 1-9.
Sabeti P., Pourmasumi S., Rahiminia T., Akyash F. and Talebi A.R. (2016). Etiologies of sperm oxidative stress. Int. J. Reprod. Biomed. 14(4), 231-240.
Salmon V.M., Leclerc P. and Bailey J.L. (2017). Novel technical strategies to optimize cryopreservation of goat semen using cholesterol-loaded cyclodextrin. Cryobiology. 74, 19-24.
Sánchez-Salcedo E.M., Mena P., García-Viguera C., Martínez J.J. and Hernández F. (2015). Phytochemical evaluation of white (Morusalba L.) and black (Morusnigra L.) mulberry fruits, a starting point for the assessment of their beneficial properties. J. Funct Foods. 12, 399-408.
Saxena G., Kumar N., Goswami R. and Sameul A. (2019). Effects of Mangifera indica and Punica granatum extracts on semen after cryopreservation. Pharma Innov J. 8(1), 114-117.
Shah N., Singh V., Yadav H.P., Verma M., Chauhan D.S., Saxena A., Yadav S. and Swain D.K. (2017). Effect of reduced glutathione supplementation in semen extender on tyrosine phosphorylation and apoptosis like changes in frozen thawed Hariana bull spermatozoa. Anim. Reprod. Sci. 182, 111-122.
Sharma A. and Sood P. (2019). Cryopreservation and fertility of frozen thawed Chegu goat semen. Indian J. Anim. Res. 53(11), 1414-1419.
Soni Y.K., Mehrotra S., Ghosh S.K., Suresh K., Tyagi S., Saha S. and Pande M. (2019). Study of semen quality in relation to seminal plasma protein and oxidative status in Frieswal cross-bred bulls. Haryana Vet. 58, 73-75.
SPSS Inc. (2011). Statistical Package for Social Sciences Study. SPSS for Windows, Version 20. Chicago SPSS Inc., USA.
Suleman S., Kanwal M.A., Malik F., Ali R., Siddique S., Kanwal N., Ahmad S.N., Younis A., Hussain I. and Ahmad K.R. (2021). Jambul (Syzygium cumini) pulp extract enhances viability, motility, and in vitro fertilizability of cryopreserved bovine semen. Biopreserv. Biobank. 19(1), 53-59.
Ullah Z., Khan H., Hussain S.M., Tunio M.T., Dilshad S.M.R., Gohar A., Zahid H. and Ali A. (2019). Enhancement of extender excellence of frozen bull semen using α-tocopherol as an antioxidant. Acta Sci. Vet. 47(1), 1-6.
Waberski D., Riesenbeck A., Schulze M., Weitze K.F. and Johnson L. (2019). Application of preserved boar semen for artificial insemination: Past, present and future challenges. Theriogenology. 137, 2-7.
Zhang B., Wang Y., Wu C., Qiu S., Chen X., Cai B. and Xie H. (2021). Freeze-thawing impairs the motility, plasma membrane integrity and mitochondria function of boar spermatozoa through generating excessive ROS. BMC Vet. Res. 17(1), 1-9.
Zhang M., Zhao G. and Gu N. (2019). Applying nanotechnology to cryopreservation studies: Status and future. Chinese Sci Bull. 64(21), 2180-2190.