Genetic Diversity Analysis of Four Sheep Breeds of Iran: Towards Genetic Maintenance and Conservation Decision
الموضوعات :H. Alnajm 1 , S. Alijani 2 , A. Javanmard 3 , S.A. Rafat 4 , K. Hasanpur 5
1 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran|Department of Animal Production Techniques, Technical College of Al-Musaib, Al-Furat Al-Awsat Technical University, Babylon, Iraq
2 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
3 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
4 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
5 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
الکلمات المفتاحية: genetic diversity, Iranian sheep breeds, short tandem repeats markers,
ملخص المقالة :
The present study was conducted to measure the genetic diversity and population genetic structure of four Iranian sheep breeds, namely; Ghezel, Makui, Kurdi and Baluchi (utilizing 20 animals per breed from both sexes) using 12 short tandem repeats markers.Our results demonstrated that the observed number of alleles and the median number of effective alleles for the Ghezel Makui, Kurdi, and Baluchi breeds were (50, 48, 44 and 43) and (2.49, 2.46, 2.45 and 2.47), respectively.Also, the mean Shannon Index was 0.982, 0.939, 0.965, and 0.959 values for Ghezel, Makui, Kurdi, and Baluchi breed, respectively.Moreover, the polymorphic information content (PIC) values were ranked from 0.09 (ILSTS011) to 0.75 (TGLA13).Additionally, the average inbreeding coefficient (FIS) was from 0.144 (Kurdi) to 0.306 (Makui).Furthermore, the lowest genetic distance was seen between Makui and Baluchi breeds (0.120), but the highest was between Ghezel and Kurdi breeds (0.884).The outcomes of this research showed the normal ‘L’-shaped distribution of the mode-shift analysis test and the lack of bottleneck in the studied populations.On this basis, we conclude that the investigated Iranian sheep breeds carry reasonable within and between genetic diversity.
Abdelkader A.A., Ata N., Benyoucef M.T., Djaout A., Azzi N., Yilmaz O., Cemal I. and Gaouar S.B.S. (2017). New genetic identification and characterisation of 12 Algerian sheep breeds by microsatellite markers. Italian J. Anim. Sci. 17, 38-48.
Abdelkader A.A., Yilmaz O., Ata N., Cemal I. and Gaouar S.B.S. (2020). Assessment of genetic diversity of Turkish and Algerian native sheep breeds. Acta Agric. Slovenia. 115, 5-14.
Abdul-Muneer P.M. (2014). Application of microsatellite markers in conservation genetics and fisheries management: Recent advances in population structure analysis and conservation strategies-review article. Genet. Res. Int. 2014, 691759-691770.
Agaviezor B.O., Peters S.O., Adefenwa M.A., Yakubu A., Adebambo O.A., Ozoje M.O., Ikeobi C.O., Wheto M., Ajayi O.O., Amusan S.A., Ekundayo O.J., Sann T.M., Okpeku M., Gbolabo O., Onasanya G., Donato M.D., Ilor B.M., Kizilkaya K. and Imumorin I.G. (2012). Morphological and microsatellite DNA diversity of Nigerian indigenous sheep. J. Anim. Sci. Biotechnol. 3, 38-45.
Amareswari P., Gnana P.M., Ekambaram B., Mahendar M. and Hari K.C. (2017). Molecular genetic studies on Nellore and Deccani sheep using microsatellite markers. Indian J. Anim. Res. 52, 805-810.
Askari N., Mohammadabadi M.R. and Baghizadeh A. (2011). ISSR markers for assessing DNA polymorphism and genetic characterization of cattle, goat and sheep populations. Iranian J. Biotechnol. 9, 222-229.
Bishop M.D., Kappes J.W., Keele R.T., Stone S.L.F. and Sunde N.Z. (1994). A genetic linkage map for cattle. Genetics. 136, 619-639.
Botstein D., White R.L., Skolnick M. and Davis W. (1980). Construction of genetic linkage maps in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314-331.
Brezinskly S.J., Kemp A. and Teale J. (1993). Five polymorphic bovine microsatellites. Anim. Genet. 24, 75-76.
Buchanaen C., Gailoway S.M. and Crawford A.M. (1994). Ovine microsatellites at the OarFCB5, OarFCBl9, OarFCB20, OarFCB48, OarFCBl29 and OarFCB226 loci. Anim. Genet. 25, 60-71.
Cherifi Y.A., Gaouar S.B.S., Guastamacchia R., El-Bahrawy K.A., Abushady A.M.A., Sharaf A.A., Harek D., Lacalandra G.M., Saidi-Mehtar N. and Ciani E. (2017). Weak genetic structure in northern African dromedary camels reflects their unique evolutionary history. PLoS One. 1, e0168672.
Coombs J.A., Letcher B.H. and Nislow K.H. (2008). CREATE: A software to create input files from diploid genotypic data for 52 genetic software programs. Mol. Ecol. Resour. 8, 578-580.
De-Gortari M.J., Freking B.A., Cuthbertson R.P., Kappes S.M., Keele J.W., Stone R.T., Kreg A., Leymaster K.R., Dodds G.K., Allan M., Crawford A.M. and Beattie C.W. (1998). A second-generation linkage map of the sheep genome. Mamm. Genome. 9, 204-209.
Dossybayev K., Orazymbetova Z., Mussayeva A., Saitou N., Zhapbasov R., Makhatov B. and Bekmanov B. (2019). Genetic diversity of different breeds of Kazakh sheep using microsatellite analysis. Arch. Anim. Breed. 62, 305-311.
Dudu A., Popa G.O., Ghita E., Pelmus R., Lazar C., Costache M. and Georgescu S.E. (2020). Assessment of genetic diversity in main local sheep breeds from Romania using microsatellite markers. Arch. Anim. Breed. 63, 53-64.
Ebrahimi M., Taghi V., Mohammadreza M. and Ali E. (2017). Using microsatellite markers to analyze genetic diversity in 14 sheep types in Iran. Arch. Anim. Breed. 3, 183-191.
Esmaeilkhanian S. and Banabazi M.H. (2006). Genetic variation within and between five Iranian sheep populations using microsatellites markers. Pakistan J. Biol. Sci. 9, 2488-2492.
Evanno G., Regnaut S. and Goudet J. )2005(. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611-2620.
Excoffier L. and Lischer H. (2010). ARLEQUIN suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Res. 10, 564-567.
FAO. (2004). Secondary Guidelines for Development of National Farm Animal Genetic Resources Management Plans. Measurement of Domestic Animal Diversity (MoDAD): Recommended Microsatellite Markers Initiative for Domestic Animal Diversity. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.
FAO. (2011). Guidelines for the Molecular Genetic Characterization of Animal Genetic Resources. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.
FAOSTAT. (2020). Database of the Food and Agricultural Organization (FAO) of the United Nations. Availabe at: http://www.fao.org/faostat/en/#home.
Gaouar S.B.S., Tabet-Aoul N., Khaïb O., Hamouda L., Boushaba N., Brahami N., Aouissat M., Dhimi L. and Saïdi Mehtar N. (2011). Genetic variability and phylogenetic relationships of ovine Algerian breeds using microsatellites. New Trends Innov. Mediterran Anim. Prod. 129, 52-54.
Georges M. and Massey J. (1992). Polymorphic DNA Markers in Bovidae. WO Publication No. 92/13120. World Intellectual Property Organisation, Geneva.
Glaubitz J.C. (2004). Convert: A user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol. Ecol. Notes. 4, 309-319.
Greguła-Kania M., Karpinski M., Gruszecki M.T., Milewski S., Drozd L., Patkowski K., Czyżowski P., Goleman M., Tajchman K., Kondracki M., Wiercińska K. and Szymanowska A. (2015). Analysis of genetic diversity in newly created sheep populations and their maternal breeds. Rocz. Nauk. Pol. Tow. Zootech. 4, 21-29.
Hartl D.L. (1980). Principles of Population Genetics. Sinauer Associates Inc., Sunderland, Massachusetts, USA.
Hristova D., Todorovska E., Vassilev D., Metodiev S., Popov I., Yablanski T. and Zhelyazkov E. (2014). Microsatellites based genetic diversity and population structure of seven Bulgarian indigenous sheep breeds. Int. J. Curr. Microbiol. Appl. Sci. 3, 569-581.
Hussain T., Musthafa M.M., Babar M., Shaheen M. and Marikar F. (2019). Molecular genetic diversity and relationship of indigenous sheep breeds of Pakistan based on nuclear microsatellite loci. Rev. Vet. 30, 54-58.
Jawasreh K.I., Mustafa I., Zuhair M.A., Abdel B.I. and Al Sukhni I. (2018). Genetic diversity and population structure of local and exotic sheep breeds in Jordan using microsatellites markers. Vet. World. 11, 2231-0916.
Jyotsana B., Jakhesaraa S., Prakashb V., Ranka D.N. and Vataliyac P.H. (2010). Genetic features of Patanwadi, Marwari and Dumba sheep breeds (India) inferred by microsatellite markers. Small Rumin. Res. 93, 57-60.
Kappes S.M., Keele J.W., Stone R.T., McGraw R.A., Sonstegard T.S., Smith T.P.L., Lopez-Corrales N.L. and Beattie C.W. (1997). A second-generation linkage map of the bovine genome. Genome Res. 7, 235-249.
Karsli B.A., Demir E., Fidan H.G. and Karsli T. (2020). Assessment of genetic diversity and differentiation among four indigenous Turkish sheep breeds using microsatellites. Arch. Anim. Breed. 63, 165-172.
Kdidi S., Calvo J.H., Gonzalez-Calvo L., Sassi M.B., Khorchani T. and Yahyaoui M.H. (2015). Genetic relationship and admixture in four Tunisian sheep breeds revealed by microsatellite markers. Small Rumin. Res. 131, 64-69.
Kevorkian S.E.M., Georgescu S.E., Manea M.A., Zaulet M., Hermenean A.O. and Costache M. (2010). Genetic diversity using microsatellite markers in four Romanian autochthonous sheep breeds. Romanian Biotechnol. Lett. 15, 5059-5065.
Kusza S., Dimov D., Nagy I., Bosze Z., Javor A. and Kukovics S. (2010). Microsatellite analysis to estimate genetic relationships among five Bulgarian sheep breeds. Genet. Mol. Biol. 33, 51-56.
Maddox J.F., Kizanne P.D., Allan M., Crawford D.J., Hulme D.V., Edmond P.C., Bradley A.F., Ken J.B., Noelle E.C., Nina K., Christopher D., Riffkin R.D., Stephen S., Moore K.G., Dodds J.M., Lumsden T.C., Stijn S.H., Phua D.L., Adelson H.R., Burkin J.E. Broom J.B., Lisa C., William T., Cushwa E.G., Susan M., Galloway B.H., Rachel J.H., Stefan H., Hannah M., Henry J.F., Medrano K.A., Paterson L.S., Roger T. and Stone B.H. (2001). An enhanced linkage map of the sheep genome comprising more than 1000 loci. Genome Res. 11, 1275-1289.
Mahmoud A.H., Farah M.A., Alanazi K., Rady A., Salah M., Amor N. and Mohammed O. (2017). Genetic diversity among Sawakni, Berberi and Najdi sheep breeds in Saudi Arabia using microsatellites markers. African J. Biotechnol. 16, 171-178.
Manjari J.S., Kumari B.P., Ekambaram B., Reddy Y.R. and Amol T. (2018). Studies on genetic Variability in Nellore brown sheep using microsatellite Markers. Int. J. Livest. Res. 11, 149-157.
Mohankishore M., Punyakumari B., Suresh J., Bharathi G. and Amol J.T. (2019). Genetic diversity analysis of Macherla Brown Sheep using microsatellite markers. Int. J. Livest. Res. 9, 84-93.
Musthafa M.M., Aljummah R.S. and Alshaik M.A. (2012). Genetic diversity of Najdi sheep based on microsatellite analysis. African J. Biotechnol. 11, 14868-14876.
Nei M. (1987). Molecular Evolutionary Genetics. Columbia University Press. New York, USA.
Ocampo R., Cardona H. and Martinez R. (2016). Genetic diversity of Colombian sheep by microsatellite markers. Chilean J. Agric. Res. 76, 40-47.
Peakall R. and Smouse P.E. (2012). GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics. 28, 2537-2546.
Peter C., Bruford M., Perez T., Dalamitra S., Hewitt G. and Erhardt G. (2007). Genetic diversity and subdivision of 57 European and Middle-Eastern sheep breeds. Anim. Genet. 38, 37-44.
Piry S., Luikart G. and Cornuet J.M. (1999). Bottleneck: A computer program for detecting recent reductions in the effective population size using allele frequency data. J. Heridity. 90, 502-503.
Pritchard J.K., Stephens M. and Donnelly P. (2000). Inference of population structure using multilocus genotype data. Genetics. 155, 945-959.
Qwabe S.O. (2011). Genetic and phenotypic characterization of the South African Namaqua Afrikaner sheep breed. MS Thesis. University of Pretoria, Pretoria, South Africa.
Rahal O., Aissaoui C., Ata N., Yilmaz O., Cemal I., Ameur Ameur A. and Gaouar S.B.S. (2020). Genetic characterization of four Algerian cattle breeds using microsatellite markers. Anim. Biotechnol. 4, 1-9.
Ramachandran A., Thiruvenkadan A.K., Kathiravan P., Saravanan R., Panneerselvam S. and Elango A. (2015). Microsatellite-based phylogeny of Indian sheep breeds. Indian J. Anim. Sci. 85, 1209-1214.
Rege J.E.O. and Gibson J.P. (2003). Animal genetic resources and economic development: issues in relation to economic valuation. Ecol. Econ. 45, 319-330.
Rosa H.J.D. and Bryant M.J. (2002). Review: Seasonality of reproduction in sheep. Small Rumin. Res. 48, 155-171.
Saberivand A., Ghodratollah M. and Arash J. (2010). Genetic variation of ten microsatellite loci in Makui sheep of Iran. Vet. Res. Commun. 6, 541-548.
Samadi Shams S., Zununi Vahed S., Soltanzad F., Kafil V., Barzegari A., Atashpaz S. and Barar J. (2011). Highly effective dna extraction method from fresh, frozen, dried and clotted blood samples. BioImpacts. 3, 183-187.
Tavakolian J. (2000). An Introduction to Genetic Resources of Native Farm Animals in Iran. Animal Science Genetic Research Institute Press. Tehran, Iran.
Tefiel H., Ata N., Chahbar M., Benyarou M., Fantazi K., Yilmaz O., Cemal I., Karaca O., Boudouma D. and Gaouar S.B.S. (2018). Genetic characterization of four Algerian goat breeds assessed by microsatellite markers. Small Rumin. Res. 160, 65-71.
Vahidi S.M.F., Faruque M.O., Kalahari A., Afraz F., Mousavi S.M., Boettcher P., Joost S., Han J.L., Colli L., Periasamy K., Negrini R. and Ajmone-Marsan P. (2016). Multilocus genotypic data reveal high genetic diversity and low population genetic structure of Iranian indigenous sheep. Anim. Genet. 4, 463-470.
Vaimand R., Osta D., Mercierc G. and Lleveziei H. (1992). Characterisation of five new bovine dinucleotide repeats. Anim. Genet. 24, 537-541.
Valdez R., Nadler C.F. and Bunch T.D. (1978). Evolution of wild sheep in Iran. Evolution. 32, 56-72.
Yeh F.C., Yang R.C., Boyle T.B., Ye Z.H. and Mao J.X. (1997). POPGENE, the user-friendly shareware for population genetic analysis. Mol. Biol. Biotechnol. Cent. 10, 295-301.
Yilmaz O., Sezenler T., Sevim S., Cemal I., Karaca O., Yaman Y. and Karadag O. (2015). Genetic relationships among four Turkish sheep breeds using microsatellites. Turkish J. Vet. Anim. Sci. 5, 576-582.
Zenga X.C., Chen H.Y., Hui W.Q., Jia B., Du Y.C. and Tian Y.Z. (2010). Genetic diversity measures of 8 local sheep breeds in northwest of china for genetic resource conservation. Asian. Australasian J. Anim. 23, 1552-1556.