A Review on the Effect of Arginine on Growth Performance, Meat Quality, Intestine Morphology, and Immune System of Broiler Chickens
الموضوعات :H. Ghamari Monavvar 1 , G. Moghaddam 2 , M. Ebrahimi 3
1 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
2 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
3 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
الکلمات المفتاحية: growth, meat quality, broiler chicken, immune system, arginine,
ملخص المقالة :
For chickens, arginine considered an essential amino acid due to the lack of urea cycle in birds. Arginine deficiency causes growth retardation, higher prevalence of disease due to the malfunction of immune system, and lower gastrointestinal capacity. However, higher levels of arginine in the diet improved growth performance, muscle hypertrophy, and meat quality. Arginine reduces carcass fat accretion by reducing liver lipogenic enzyme expressions and activities, but it improves muscle fat content. As an immunonutrition, feeding arginine shows some immunostimulatory and thymotrophic role and improves both humoral and cellular immunity. Also, in ovo injection of arginine improves both growth and immune function of birds. Arginine also improves insulin, growth hormone, and thyroid hormone secretion and by which, improves growth in a dose dependent manner. Arginine also improves small intestine histomorphology and enzyme activity and then, improves bird digestive system capacity and efficiency. Accordingly, the aim of this review article was to focus on the effects of arginine on growth, immune system, and meat quality of broiler chickens.
Abdolalizadeh Alvanegh F., Ebrahimi M. and Daghigh Kia H. (2017). Effect of in ovo injection of different ratios of L-arginine to L-lysine on body growth, muscle production, and blood metabolites concentration of day old Ross broiler chicks. Iranian J. Anim. Sci. 48, 207-217.
Adibmoradi M., Ebrahimi M., Zare Shahneh A., Shivazad M., Ansari Pirsaraei Z., Tebianian M. and Nourijelyani K. (2015). The effects of L-arginine on growth, small intestine, and immune system of broilers in starter period. Iranian J. Anim. Sci. 45, 223-233.
Al-Daraji H.J. and Salih A.M. (2012). Effect of dietary L-arginine on carcass traits of broilers. Res. Opin. Anim. Vet. Sci. 2, 40-44.
Ansari Pirsaraei Z., Ebrahimi M., Zare Shahneh A., Shivazad M. and Tebianian M. (2015). Determination of the best dietary level of L-arginine on improving growth performance, carcass traits and blood parameters in broiler chickens in the starter and grower periods. Res. Anim. Prod. 6, 87-95.
Ansari Pirsaraei Z., Rahimi A., Deldar H., Sayyadi A.J., Ebrahimi M., Zareh Shahneh A., Shivazad M. and Tebianian M. (2018). Effect of feeding arginine on the growth performance, carcass traits, relative expression of lipogenic genes, and blood parameters of Arian broilers. Brazilian J. Poult. Sci. 20, 363-370.
Attia Y.A, Hassan R.A., Tag El-Din A.E. and AbouShehema B.M. (2011). Effect of ascorbic acid or increasing metabolizable energy level with or without supplementation of some essential amino acids on productive and physiological traits of slow growing chicks exposed to chronic heat stress. J. Anim. Physiol. Anim. Nutr. 95, 744-755.
Ball R.O., Urschel K.L. and Pencharz P.B. (2007). Nutritional consequences of interspecies differences in arginine and lysine metabolism. J. Nutr. 137, 1626-1641.
Balnave D. and Brake J. (2002). Re-evaluation of the classical dietary arginine: lysine interaction for modern poultry diets: A review. World’s Poult. Sci. J. 58, 275-289.
Castro F.L.S., Su S., Choi H., Koo E. and Kim W.K. (2018). L-Arginine supplementation enhances growth performance, lean muscle, and bone density but not fat in broiler chickens. Poult. Sci. 98, 1716-1722.
Chang Y., Cai H., Liu G., Chang W., Zheng A., Zhang S., Liao R., Liu W., Li Y. and Tian J. (2015). Effects of dietary leucine supplementation on the gene expression of mammalian target of rapamycin signaling pathway and intestinal development of broilers. Anim. Nutr. 1, 313-319.
Corzo A. and Kidd M.T. (2003). Arginine needs of the chick and growing broiler. Int. J. Poult. Sci. 2, 379-382.
D’Amato J.L. and Humphrey B.D. (2010). Dietary arginine levels alter markers of arginine utilization in peripheral blood mononuclear cells and thymocytes in young broiler chicks. Poult. Sci. 89, 938-947.
Deng K., Wong C.W. and Nolan J.V. (2005). Long-term effects of early life L-arginine supplementation on growth performance, lymphoid organs and immune responses in Leghorn-type chickens. British Poult. Sci. 46, 318-324.
Ebrahimi M., Abdolalizadeh Alvanagh F., Adibmoradi M., Janmohammadi H. and Rajabi Z. (2018). The impact of in ovo feeding with different L-arginine to L-lysine ratios on small intestine histological characteristics and immune system organs in day-old chicks. Anim. Sci. Res. 2, 177-191.
Ebrahimi M., Janmohammadi H., Daghigh Kia H., Moghaddam G., Rajabi Z., Rafat S.A. and Javanmard A. (2017). The effect of L-lysine in ovo feeding on body weight characteristics and small intestine morphology in a day-old Ross broiler chicks. Revue Méd. Vét. 168, 116-124.
Ebrahimi M., Zare Shahneh A., Shivazad M., Ansari Pirsaraei Z. and Ghafari Balesini M. (2016a). The effects of dietary L-arginine on some parameters of meat quality, intestine histology and immune system of 46-d old broiler chickens. Anim. Sci. Res. 26, 83-96.
Ebrahimi M., Zare Shahneh A., Shivazad M. and Ansari Pirsaraei Z. (2016b). Evaluation of 24 days feeding L-arginin on performance, meat quality and blood metabolites in broilers. Anim. Sci. Res. 25, 61-72.
Ebrahimi M., Zare Shahneh A., Shivazad M. and Ansari Pirsaraei Z. (2015). The effects of feeding high levels of L-arginine at the starter period on meat production and its quality, and blood parameters in broiler chicks. Iranian J. Anim. Sci. Res. 46, 169-179.
Ebrahimi M., Zare Shahneh A., Shivazad M., Ansari Pirsaraei Z., Tebianian M., Ruiz-Feria C.A., Adibmoradi M., Nourijelyani K. and Mohamadnejad F. (2014a). The effect of feeding excess arginine on lipogenic gene expression and growth performance in broilers. British Poult. Sci. 55, 81-88.
Ebrahimi M., Zare Shahneh A., Shivazad M., Ansari Pirsaraei Z., Tebianian M., Adibmoradi M. and Nourijelyani K. (2014b). The effects of high levels of L-arginine on performance, morphology of small intestine and immune system organs of broilers during the growth period. Anim. Sci. Res. 24, 95-107.
Ebrahimi M., Zare Shahneh A., Shivazad M., Ansari Pirsaraei Z., Tebianian M., Adibmoradi M. and Nourijelyani K. (2014c). The effects of L-arginine supplement on growth, meat production, and fat deposition in broiler chickens. Iranian J. Anim. Sci. Res. 5, 281-290.
Ebrahimi M., Zare Shahneh A., Shivazad M., Ansari Pirsaraei Z., Tebianian M., Adibmoradi M. and Nourijelyani K. (2013). Evaluation of the effect of feeding L-arginine on growth performance, carcass traits and blood parameters in broiler chickens. Iranian J. Anim. Sci. Res. 44, 157-166.
Edwards N.M., Heberle N.D. and Hynd P.I. (2016). The effect of in ovo administration of L-arginine on the hatchability and embryological development of broiler chicks. Pp. 24-28 in Proc. Aust. Soc. Anim. Prod.,Adelaide, Australia.
Emadi M., Jahanshiri F., Kaveh K., Hair-Bejo M., Ideris A. and Alimon A.R. (2011). Nutrition and immunity: The effects of the combination of arginine and tryptophan on growth performance, serum parameters and immune response in broiler chickens challenged with infectious bursal disease vaccine. Avian Pathol. 40, 63-72.
Emadi M., Kaveh K., Bejo M.H., Ideris A., Jahanshiri F., Ivan M. and Alimon R.A. (2010). Growth performance and blood parameters as influenced by different levels of dietary arginine in broiler chickens. J. Anim. Vet. Adv. 9, 70-74.
Evoy D., Lieberman M.D., Fahey III T.J. and Daly J.M. (1998). Immunonutrition: The role of arginine. Nutrition. 14, 611-617.
Fernandes J.I.M., Murakami A.E., Martins E.N., Sakamoto M.I. and Garcia E.R.M. (2009). Effect of arginine on the development of the pectoralis muscle and the diameter and the protein: deoxyribonucleic acid rate of its skeletal myofibers in broilers. Poult. Sci. 88, 1399-1406.
Foye O.T., Ferket P.R. and Uni Z. (2007). The effects of in ovo feeding arginine, β-hydroxy-β-methyl-butyrate, and protein on jejunal digestive and absorptive activity in embryonic and neonatal turkey poults. Poult. Sci. 86, 2343-2349.
Foye O.T., Uni Z., McMurty J.P. and Freket P.R. (2006). The effects of nutrient administration, "in ovo feeding" of arginine and / or β-hydroxy-β-methyle butyrate (HMB) on insulin–like growth factors, energy metabolism and growth in turkey poults. Int. J. Poult. Sci. 5, 309-317.
Gao T., Zhao M.M., Li Y.J., Zhang L., Li J.L., Yu L.L., Gao F. and Zhou G.H. (2017). Effects of in ovo feeding of L-arginine on the development of digestive organs, intestinal function and post-hatch performance of broiler embryos and hatchlings. J. Anim. Physiol. Anim. Nutr. 2017, 1-10.
Gatt M., Reddy B.S. and MacFie J. (2007). Review article: Bacterial translocation in the critically ill-evidence and methods of prevention. Aliment. Pharmacol. Therapeut. 25, 741-757.
Jahanian R. (2009). Immunological responses as affected by dietary protein and arginine concentrations in starting broiler chicks. Poult. Sci. 88, 1818-1824.
Jiao P., Guo Y., Yang X. and Long F. (2010). Effects of dietary arginine and methionine levels on broiler carcass traits and meat quality. J. Anim. Vet. Adv. 9, 1546-1551.
Jobgen W.S., Fried S.K., Fu W.J., Meininger C.J. and Wu G. (2006). Regulatory role for the arginine–nitric oxide pathway in metabolism of energy substrates. J. Nutr. Biochem. 17, 571-588.
Khajali F. and Wideman R.F. (2010). Dietary arginine: metabolic, environmental, immunological and physiological interrelationships. World's Poult. Sci. J. 66, 751-766.
Kidd M.T. (2004). Nutritional modulation of immune function in broilers. Poult. Sci. 83, 650-657.
Kidd M.T., Peebles E.D., Whitmarsh S.K., Yeatman J.B. and Wideman R.F. (2001). Growth and immunity of broiler chicks as affected by dietary arginine. Poult. Sci. 80, 1535-1542.
Kirk S.J., Regan M.C., Wasserkrug H.L., Sodeyama M. and Barbul A. (1992). Arginine enhances T-cell responses in athymic nude mice. J. Parenter. Enteral. Nutr. 16, 429-432.
Kwak H., Austic R.E. and Dietert R.R. (2001). Arginine-genotype interactions and immune status. Nutr. Res. 21, 1035-1044.
Lee J.E., Austic R.E., Naqi S.A., Golemboski K.A. and Dietert R.R. (2002). Dietary arginine intake alters avian leukocyte population distribution during infectious bronchitis challenge. Poult. Sci. 81, 793-798.
Ma X., Lin Y., Jiang Z., Zheng C., Zhou G., Yu D., Cao T., Wang J. and Chen F. (2010). Dietary arginine supplementation enhances antioxidative capacity and improves meat quality of finishing pigs. Amino Acids. 38, 95-102.
Mohan I. and Cas U. (1998). Effect of L-arginine nitric oxide system on chemical induced diabetes mellitus. Free Radic. Biol. Med. 25, 757-765.
Morris S.M. (2004). Enzymes of arginine metabolism. J. Nutr. 134, 2743-2747.
Munir K., Muneer M.A., Masaoud E., Tiwari A., Mahmud A., Chaudhry R.M. and Rashid A. (2009). Dietary arginine stimulates humoral and cell-mediated immunity in chickens vaccinated and challenged against hydropericardium syndrome virus. Poult. Sci. 88, 1629-1638.
Murakami A.E., Fernandes J.I., Hernandes L. and Santos T.C. (2012). Effects of starter diet supplementation with arginine on broiler production performance and on small intestine morphometry. Pesq. Vet. Bras. 32, 259-266.
Nayak N., Rajini R.A., Ezhilvalavan S., Sahu A.R. and Kirubaharan J.J. (2016). Influence of in ovo arginine feeding on post-hatch growth performance and economics of broilers. J. Anim. Res. 6, 585-591.
Newsholme P., Brennan L., Blanca R.U.B.I. and Maechler P. (2005). New insights into amino acid metabolism, β-cell function and diabetes. Clin. Sci. 108, 185-194.
NRC. (1994). Nutrient Requirements of Poultry, 9th Rev. Ed. National Academy Press, Washington, DC., USA.
Omidi S. (2018). The effect of in ovo injection with L-arginine on growth performance, meat quantity and quality, blood metabolites, and intestine histomorphology in broilers. MS Thesis. University of Tabriz, Tabriz, Iran.
Oso A.O., Williams G.A., Oluwatosin O.O., Bamgbose A.M., Adebayo A.O., Olowofeso O., Pirgozliev V., Adegbenjo A.A., Osho S.O., Alabi J.O. and Li F. (2017). Effect of dietary supplementation with arginine on haematological indices, serum chemistry, carcass yield, gut microflora, and lymphoid organs of growing turkeys. Livest. Sci. 198, 58-64.
Pluske J.R., Hampson D.J. and Williams I.H. (1997). Factors influencing the structure and function of the small intestine in the weaned pig-a review. Livest. Prod. Sci. 51, 215-236.
Pordel O., Khazali H., Rokni H. and Hosseini A. (2018). Administration of different levels of arginine and lysine coupled with copper for change the copper concentration of milk in the lactating Zandi’s ewes. Iranian J. Appl. Anim. Sci. 8(2), 241-246.
Rhoads J.M. and Wu G. (2009). Glutamine, arginine, and leucine signaling in the intestine. Amino Acids. 37, 111-122.
Ruemmele F.M., Ruemmele C., Levy E. and Seidman E. (1999). Les mécanismes moléculaires de la régulation du renouvellement de cellules épithéliales intestinales par des nutriments. Gastroenterol. Clin. Biol. 23, 47-55.
Ruiz-Feria C.A. and Abdukalykova S.T. (2009). Arginine and vitamin E improve the antibody responses to infectious bursal disease virus (IBDV) and sheep red blood cells in broiler chickens. British Poult. Sci. 50, 291-297.
Schleiffer R. and Raul F. (1996). Prophylactic administration of L-arginine improves the intestinal barrier function after mesenteric ischaemia. Gut. 39, 194-198.
Sung Y.J., Hotchkiss J.H., Austic R.E. and Dietert R.R. (1991). L-arginine dependent production of a reactive nitrogen intermediate by macrophages of a uricotelic species. J. Leukoc. Biol. 50, 49-56.
Taboada M.C., Rodriguez B., Millán R. and Míguez I. (2006). Role of dietary L-arginine supplementation on serum parameters and intestinal enzyme activities in rats fed an excess-fat diet. Biomed. Pharmacother. 60, 10-13.
Tan J., Applegate T.J., Liu S., Guo Y. and Eicher S.D. (2014). Supplemental dietary L-arginine attenuates intestinal mucosal disruption during a coccidial vaccine challenge in broiler chickens. British J. Nutr. 112, 1098-1109.
Tan X., Sun W.D., Li J.C., Pan J.Q., Liu Y.J., Wang J.Y. and Wang X.L. (2007). L-arginine prevents reduced expression of endothelial nitric oxide synthase (NOS) in pulmonary arterioles of broilers exposed to cool temperatures. Vet. J. 173, 151-157.
Tan B., Yin Y., Kong X., Li P., Li X., Gao H., Li X., Huang R. and Wu G. (2010). L-arginine stimulates proliferation and prevents endotoxin-induced death of intestinal cells. Amino Acids. 38, 1227-1235.
Tan B., Yin Y., Liu Z., Li X., Xu H., Kong X., Huang R., Tang W., Shinzato I., Smith S.B. and Wu G. (2009). Dietary L-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids. 37, 169-175.
Tan B., Yin Y., Liu Z., Tang W., Xu H., Kong X., Li X., Yao K., Gu W., Smith S.B. and Wu G. (2011). Dietary L-arginine supplementation differentially regulates expression of lipid-metabolic genes in porcine adipose tissue and skeletal muscle. J. Nutr. Biochem. 22, 441-445.
Tayade C., Koti M. and Mishra S.C. (2006). L-arginine stimulates intestinal intraepithelial lymphocyte functions and immune response in chickens orally immunized with live intermediate plus strain of infectious bursal disease vaccine. Vaccine. 24, 5473-5480.
Viana M.L., Santos R.G., Generoso S.V., Arantes R.M., Correia M.I.T. and Cardoso V.N. (2010). Pretreatment with arginine preserves intestinal barrier integrity and reduces bacterial translocation in mice. Nutrition. 26, 218-223.
Wang W.W., Qiao S.Y. and Li D.F. (2009). Amino acids and gut function. Amino Acids. 37, 105-110.
Wu L.Y., Fang Y.J. and Guo X.Y. (2011). Dietary L-arginine supplementation beneficially regulates body fat deposition of meat-type ducks. British Poult. Sci. 52, 221-226.
Wu X., Ruan Z., Gao Y., Yin Y., Zhou X., Wang L., Geng M., Hou Y. and Wu G. (2010). Dietary supplementation with L-arginine or N-carbamyl glutamate enhances intestinal growth and heat shock protein-70 expression in weanling pigs fed a corn- and soybean meal-based diet. Amino Acids. 39, 831-839.
Xu Y.Q., Guo Y.W., Shi B.L., Yan S.M. and Guo X.Y. (2018). Dietary arginine supplementation enhances the growth performance and immune status of broiler chickens. Livest. Sci. 209, 8-13.
Yao K., Guan S., Li T., Huang R., Wu G., Ruan Z. and Yin Y. (2011). Dietary L-arginine supplementation enhances intestinal development and expression of vascular endothelial growth factor in weanling piglets. British J. Nutr. 105, 703-709.
Yao K., Yin Y.L., Chu W., Liu Z., Deng D., Li T., Huang R., Zhang J., Tan B., Wang W. and Wu G. (2008). Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J. Nutr. 138, 867-872.
Zhang B., Lv Z., Li H., Guo S., Liu D. and Guo Y. (2017). Dietary l-arginine inhibits intestinal Clostridium perfringens colonisation and attenuates intestinal mucosal injury in broiler chickens. British J. Nutr. 118, 321-332.
Zhang B., Lv Z., Li Z., Wang W., Li G. and Guo Y. (2018). Dietary L-arginine supplementation alleviates the intestinal injury and modulates the gut microbiota in broiler chickens challenged by clostridium perfringens. Front. Microbiol. 9, 1716-1716.