Robust Cluster-Based method for monitoring generalized linear profiles in phase I
الموضوعات :Davood Saremian 1 , Rassoul Noorossana 2 , Sadigh Raissi 3 , Paria Soleimani 4
1 - Department of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
2 - Industrial Engineering Department, Iran University of Science and Technology
3 - Department of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
4 - Department of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
الکلمات المفتاحية: Clustering, Generalized linear models, robust, Phase I, Hotelling T^2,
ملخص المقالة :
Profile monitoring is one of the new statistical quality control methods used to evaluate the functional relationship between the descriptive and response variables to measure the process quality. Most of the studies in this field concern processes whose response variables follow the normal distribution function, but in many industries and services, this assumption is not true. The presence of outliers in the historical data set could have a deleterious effect on phase I parameter estimation. Therefore, in this paper, we propose a robust cluster-based method for estimating the parameters of generalized linear profiles in phase I. In this method, the effect of data contamination on estimating the generalized linear model parameters is reduced and as a result, the performance of T^2 control charts is improved. The performance of this method has been evaluated for two specific modes of generalized linear profiles, including logistic and Poisson profiles, based on a step shift. The simulation results indicate the superiority of this cluster-based method in comparison to the non-clustering method and provide a more accurate estimation of the parameters.
[1] Amiri A, Koosha, M., Azhdari & Aand Wang G. (2014). Phase
I monitoring of generalized linear model-based regression
profiles. Journal of Statistical Computation and Simulation,
85(14), 2839-2859. doi:10.1080/00949655.2014.942864
Comparison of the Performance of Phase II Simple Linear
Profile Control Charts when Parameters are estimated.
Communications in Statistics - Simulation and Computation,
44(6), 1432–1440. doi:10.1080/03610918.2013.821484
Hotelling’s T2 control chart on the presence of fixed sampling
rate and exponentially assignable causes, Journal of Industrial
Engineering International, a Springer Journal, December
2014, Volume 10, Issue 4, pp 229–238, ISSN: 1735-5702.
generalized linear models. Journal of the American Statistical
Association, 96(455), 1022-1030.
Profiles in Phase I. Quality and Reliability Engineering
International, 31(8), 1367-1381. doi:10.1002/qre.1671
control chart for profile monitoring. Quality and Reliability
Engineering International, 27(4), 451–464. doi:10.1002/
qre.1140
Profile monitoring in phase 1. Journal of Quality Technology,
47(1), 14-29. doi:10.1080/00224065.2015.11918103
[8] Cheung, J. M. Y., Bartlett, D. J., Armour, C. L., Laba, T. L., &
Saini, B. (2018). To drug or not to drug: A qualitative study of
patients’ decision-making processes for managing
insomnia. Behavioral Sleep Medicine, 16(1), 1-26.
doi:10.1080/15402002.2016.1163702
[9] Hakimi, A., Amiri, A., & Kamranrad, R. (2017). Robust
approaches for monitoring logistic regression profiles under
outliers. International Journal of Quality & Reliability
Management, 34(4), 494-507. doi:10.1108/ijqrm-04-2015-
0053
[10] Izadbakhsh, H., Noorossana, R., & Niaki, S. T. A. (2018).
Monitoring multinomial logistic profiles in Phase I using log-
linear models. International Journal of Quality & Reliability
Management, 35(3), 678-689. doi:10.1108/ijqrm-04-2017-
0068
[11] Jensen WA, Birch JB, & Woodall WH. Monitoring Correlation
Within Linear Profiles Using Mixed Models. Journal of Quality
Technology 2008, 40(2), 167–183. doi:10.1080/00224065.
2008.11917723.
[12] Kang, L., & Albin, S. L. (2000). On-Line Monitoring When the
Process Yields a Linear Profile. Journal of Quality Technology,
32(4), 418 426. doi:10.1080/00224065.2000. 11980027
[13] Koosha, A. A. a. M. (2011). The Effect of Neglecting
Autocorrelation on the Performance of T2 Control Charts in
Monitoring of Logistic Profiles. Proceedings of the 2011 IEEE
ICQR.
[14] Koosha, M., & Amiri, A. (2012). Generalized linear mixed
model for monitoring autocorrelated logistic regression
profiles. The International Journal of Advanced Manufacturing
Technology, 64(1-4), 487-495. doi:10.1007/s00170-012-4018-
2
[15] Li, C.-I., Pan, J.-N., & Liao, C.-H. (2019). Monitoring nonlinear
profile data using support vector regression method. Quality
and Reliability Engineering International, 35(1), 127-135.
doi:https://doi.org/ 10.1002/qre.2385
[16] Moheghi, H. R., Noorossana, R., & Ahmadi, O. (2020). GLM
profile monitoring using robust estimators. Quality and
Reliability Engineering International, 1– 17.doi:https://doi.org/
10.1002/qre.2755
[17] McCullagh, P. and Nelder, J.A. (1989) Generalized Linear
Models, second edition, Chapman & Hall, London, UK.
[18] Nikoo, M., & Noorossana, R. (2012). Phase II Monitoring of Nonlinear Profile Variance Using
Wavelet. Quality and Reliability Engineering International, 29(7), 1081-1089.
doi:10.1002/qre.1460
[19] Noorossana, R., Eyvazian, M., Amiri, A., & Mahmoud, M. A. (2010). Statistical monitoring of
multivariate multiple linear regression profiles in phase I with calibration application. Quality
and Reliability Engineering International, 26(3), 291–303. doi:10.1002/qre.1066
[20] Olsson, U. (2002). Generalized Linear Models: An Applied Approach: Lightning Source.
[21] Pan, J.-N., Li, C.-I., & Lu, M. Z. (2019). Detecting the process changes for multivariate nonlinear
profile data. Quality and Reliability Engineering International, 35(6), 1890-1910.
doi:https://doi.org/10.1002/qre.2482
[22] Paynabar, K., Jin, J., & Pacella, M. (2013). Monitoring and diagnosis of multichannel nonlinear
profile variations using uncorrelated multilinear principal component analysis. IIE Transactions,
45(11), 1235-1247. doi:10.1080/0740817x. 2013.770187
[23] Shadman, A., Zou, C., Mahlooji, H., & Yeh, A. B. (2014). A change point method for Phase II
monitoring of generalized linear profiles. Communications in Statistics - Simulation and
Computation, 46(1), 559-578. doi:10.1080/03610918.2014. 970698
[24] Shadman, A., Mahlooji, H., Yeh, A. B., & Zou, C. (2015). A change point method for monitoring
generalized linear profiles in phase I. Quality and Reliability Engineering International 31 (8),
1367-1381. https://doi.org/10.1002/qre.1671
[25] Shiau, J.-J. H., & Sun, J.-H. (2009). A new strategy for Phase I analysis in SPC. Quality and
Reliability Engineering International, 26(5), 475-486. doi:10.1002/qre.1075
[26] Soleimani Paria, Narvand Ali, Raissi Sadigh, (2013), Online Monitoring of Auto-correlated
Linear Profiles via Mixed Model, International Journal of Manufacturing Technology and
Management, 27(4/5/6), 238-250.
[27] Vargas, N. J. A. (2003). Robust Estimation in Multivariate Control Charts for Individual
Observations. Journal of Quality Technology, 35(4), 367–376. doi:10.1080/00224065.2003.
11980234.
[28] Walker, E., & Wright, S. P. (2018). Comparing Curves Using Additive Models. Journal of
Quality Technology, 34(1), 118-129. doi:10.1080/00224065.2002.11980134
[29] Williams JD, Woodall WH, Birch, JB, & Sullivan JH (2006). Distribution of Hotelling’s T2
Statistic Based on the Successive Differences Estimator. Journal of Quality Technology 2006,
38(3), 217–229. doi:10.1080/00224065. 2006.11918611.
[30] YEH, A. B. (2009). profile monitoring for a binary response. IIE Transactions 931–941.
doi:10.1080/0740817090273540