بررسی مکانیسم اثر خاصیت ضد قارچی باکتریوسین تولید شده توسط Bacillus sp. Sh10
الموضوعات :
فاطمه شایسته
1
,
گریس یوسوپ
2
1 - گروه شیلات، دانشکده علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران
2 - گروه علوم زیست محیطی و منابع طبیعی دانشکده علوم و فناوری، دانشگاه ملی کشور مالزی
تاريخ الإرسال : 06 الجمعة , جمادى الأولى, 1443
تاريخ التأكيد : 13 السبت , شوال, 1443
تاريخ الإصدار : 06 الأحد , ذو القعدة, 1443
الکلمات المفتاحية:
باسیلوس,
باکتریوسین,
کاندیدا آلبیکنس,
ضد قارچ,
باکتریهای دریایی,
ملخص المقالة :
سابقه و هدف: باکتریوسینها پپتیدهای ضد میکروبی هستند که توسط باکتریهای مختلف تولید میشوند و به عنوان عامل درمانی مورد استفاده قرار میگیرند. هدف از این مطالعه بررسی مکانیسم اثر ضد میکروبی باکتریوسین تولید شده توسط باکتری دریایی Bacillus sp. Sh10، بر علیه پاتوژن Candida albicans ATCC 10231 میباشد.
مواد و روشها: مکانیسم ضد میکروبی باکتریوسین با استفاده از روشهای زنده مانی سلول، میزان خروج مواد جاذب UV، نمکهای معدنی،K+ ATP از سلول و همچنین میکروسکوپ الکترونی روبشی و عبوری مورد بررسی قرار گرفت.
یافتهها: افزودن میزان 1 × MIC باکتریوسین به سوسپانسیون سلولیC. albicans تعداد سلولهای زنده را حدود 4 واحد لگاریتمی طی 10 ساعت کاهش داد. همچنین، با توجه به خروج مواد جاذب UV، نمکهای معدنی،K+ ATP از سلولهایC. albicans مشخص گردید که باکتریوسین مورد نظرباعث کشتن سلولهای قارچی گردیده است. علاوه بر این سلولهای تیمار شده با باکتریوسین نسبت به پروپیدیوم یدید نفوذپذیر گشتند. مشاهدات میکروسکوپ الکترونی روبشی و عبوری تغییرات زیادی را در مرفولوژی سلول از جمله سطح چروکیده، دیواره سلولی ناپیوسته و پاره شده به همراه لایز شدن سلولها نشان داد.
نتیجهگیری: نتایج بهدست آمده در مطالعه حاضر نشان داد که باکتریوسین با غشای سیتوپلاسمی سلولهای C. albicans برهم کنش داشته و منجر به تشکیل منافذ میشود، که این تغییرات منجر به خروج مواد داخل سلولی و در نهایت باعث مرگ سلول میشود
المصادر:
References
Klepser ME. Antifungal resistance among Candida species. Pharmacotherapy. 2001; 21 (8 Pt 2): 124-132.
Mackenzie DWR, Cauwenberg G, Van Cutsem J, Drouhet E, Dupont B. Mycoses in AIDS patients: An overview.1990; New York, Plenum Press.
Friedman S, Richardson SE, Jacobs SE, O’Brien K. Systemic Candida infection in extremely low birth weight infants: Short term morbidity and neuro developmental outcome. The Pediatr Infect Dis J. 2000; 19 (6): 499-504.
Jarvis WR. Epidemiology of nosocomial fungal infections, with emphasis on Candida species. Clin Infect Dis. 1995; 20 (6): 1526-1530.
Douglas LJ. Candida biofilms and their role in infection. Trends Microbiol. 2003; 11 (1): 30-36.
Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007; 20 (1): 133-63.
Arendrup MC, Sulim S, Holm A, Nielsen L, Nielsen SD, Knudsen JD, Drenck NE, Christensen JJ, Johansen HK. Diagnostic issues, clinical characteristics, and outcomes for patients with fungemia. J Clin Microbiol. 2011; 49 (9): 3300-3308.
Lai CC, Wang CY, Liu WL, Huang YT, Hsueh PR. Time to positivity of blood cultures of different Candida species causing fungaemia. J Med Microbiol. 2012; 61 (Pt 5):701-704.
Khan ZU, Chandy R, Metwali KE. Candida albicans strain carriage in patients and nursing staff of an intensive care unit: a study of morphotypes and resistotypes. Mycoses. 2003; 46 (11-12): 476-486.
Riley MA, Wertz JE. Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie. 2002; 84 (5-6): 357-364.
Batoni G, Maisetta G, Brancatisano FL, Esin S, Campa M. Use of antimicrobial peptides against microbial biofilms: advantages and limits. Curr Med Chem. 2011; 18 (2): 256-279.
Okuda K, Zendo T, Sugimoto S, Iwase T, Tajima A, Yamada S, Sonomoto K, Mizunoe Y. Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrob Agents Chemother. 2013; 57 (11): 5572-5579.
Savadogo A, Ouattara CAT, Basole IHN, Traore SA. Bacteriocins and lactic acid bacteria: a mini-review. Afr J Biotechnol. 2006; 5 (9): 678-683.
O’ Sullivan LO, Ross PP, Hill C. Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie. 2002; 84 (5-6): 593-604.
Shayesteh F, Ahmad A, Usup G. Bacteriocin production by a marine strain of Bacillus sp. Sh10: Isolation, screening and optimization of culture condition. Biotechnol. 2014; 13 (6): 273-281.
Shayesteh F, Ahmad A, Usup G. Partial Characterization of an Anti-Candida albicans Bacteriocin Produced by a Marine Strain of Bacillus sp., Sh10. Adv J Food Sci Technol. 2015; 9 (9): 664-671.
Pridham TG, Gottlieb D. The utilization of carbon compounds by some actinomycetales as an aid for species determination. J Bacteriol. 1948; 56 (1): 107-114.
Rajaram, G, Manivasagan P, Thilagavathi B, Saravanakumar A. Purification and characterization of a bacteriocin produced by Lactobacillus lactis isolated from marine environment. Adv J Food Sci Technol. 2010; 2 (2): 138-144.
Seuk-Hyun K, Cheol A. Bacteriocin production by Lactococcus lactis KCA 2386 isolated from white kimchi. Food Sci Biotechnol. 2000; 9: 263-269.
Clinical and Laboratory Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 6th edn. 2003; CLSI Document M7-A6: Wayne.
Motta AS, Flores FS, Souto AA, Brandelli A. Antibacterial activity of a bacteriocin-like substance produced by Bacillus sp. P34 that targets the bacterial cell envelope. Antonie Van Leeuwenhoek. 2008; 93 (3): 275-284.
Zhou K, Zhou W, Li P, Liu G, Zhang, J. Mode of action of pentocin 31-1: An antilisteria bacteriocin produced by Lactobacillus pentosus from Chinese traditional ham. Food Control. 2008; 19 (8): 817-22.
Ames BN. Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol. 1966; 8: 115-118.
Chen Y, Montville TJ. Efflux of ions and ATP depletion induced by pediocin PA-1 are concomitant with cell-death in Listeria monocytogenes Scott-A. J Appl Microbiol. 1995; 79 (6): 684-90.
Maurya IK, Pathak, S, Sharma M, Sanwa H, Chaudhary P, Tupe S, Deshpande M, Chauhan VS, Prasad R. Antifungal activity of novel synthetic peptides by accumulation of reactive oxygen species (ROS) and disruption of cell wall against Candida albicans. Peptides. 2011; 32 (8): 1732-1740.
Sharma A, Srivastava SH. Anti-Candida activity of two-peptide bacteriocins, plantaricins (Pln E/F and J/K) and their mode of action. Fungal Biol. 2014; 118 (2): 264-275.
Herranz C, Chen Y, Chung HJ, Cintas LM, Hernandez PE, Montville TJ, Chikindas ML. Enterocin P Selectively Dissipates the Membrane Potential of Enterococcus faecium T136. Appl Environ Microbiol. 2001; 67 (4): 1689-1692.
Fujita K, Ichimasa S, Zendo T, Koga S, Yoneyama F, Nakayama J, Sonomoto k. Structural Analysis and Characterization of Lacticin Q, a Novel Bacteriocin Belonging to a New Family of Unmodified Bacteriocins of Gram-Positive Bacteria. Appl Environ Microbiol. 2007; 73 (9): 2871-2877.
Gonzalez B, Glaasker E, Kunji ERS, Driessen AJM, Suarez JE. Bactericidal mode of action of plantaricin C. Appl Environ Microbiol. 1996; 62 (8): 2701-2709.
Yurong G, Dapeng L, Yan Sh, Xiaoyan L. Mode of action of sakacin C2 against Escherichia coli. Food Control. 2011; 22 (5): 657-661.
_||_References
Klepser ME. Antifungal resistance among Candida species. Pharmacotherapy. 2001; 21 (8 Pt 2): 124-132.
Mackenzie DWR, Cauwenberg G, Van Cutsem J, Drouhet E, Dupont B. Mycoses in AIDS patients: An overview.1990; New York, Plenum Press.
Friedman S, Richardson SE, Jacobs SE, O’Brien K. Systemic Candida infection in extremely low birth weight infants: Short term morbidity and neuro developmental outcome. The Pediatr Infect Dis J. 2000; 19 (6): 499-504.
Jarvis WR. Epidemiology of nosocomial fungal infections, with emphasis on Candida species. Clin Infect Dis. 1995; 20 (6): 1526-1530.
Douglas LJ. Candida biofilms and their role in infection. Trends Microbiol. 2003; 11 (1): 30-36.
Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007; 20 (1): 133-63.
Arendrup MC, Sulim S, Holm A, Nielsen L, Nielsen SD, Knudsen JD, Drenck NE, Christensen JJ, Johansen HK. Diagnostic issues, clinical characteristics, and outcomes for patients with fungemia. J Clin Microbiol. 2011; 49 (9): 3300-3308.
Lai CC, Wang CY, Liu WL, Huang YT, Hsueh PR. Time to positivity of blood cultures of different Candida species causing fungaemia. J Med Microbiol. 2012; 61 (Pt 5):701-704.
Khan ZU, Chandy R, Metwali KE. Candida albicans strain carriage in patients and nursing staff of an intensive care unit: a study of morphotypes and resistotypes. Mycoses. 2003; 46 (11-12): 476-486.
Riley MA, Wertz JE. Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie. 2002; 84 (5-6): 357-364.
Batoni G, Maisetta G, Brancatisano FL, Esin S, Campa M. Use of antimicrobial peptides against microbial biofilms: advantages and limits. Curr Med Chem. 2011; 18 (2): 256-279.
Okuda K, Zendo T, Sugimoto S, Iwase T, Tajima A, Yamada S, Sonomoto K, Mizunoe Y. Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrob Agents Chemother. 2013; 57 (11): 5572-5579.
Savadogo A, Ouattara CAT, Basole IHN, Traore SA. Bacteriocins and lactic acid bacteria: a mini-review. Afr J Biotechnol. 2006; 5 (9): 678-683.
O’ Sullivan LO, Ross PP, Hill C. Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie. 2002; 84 (5-6): 593-604.
Shayesteh F, Ahmad A, Usup G. Bacteriocin production by a marine strain of Bacillus sp. Sh10: Isolation, screening and optimization of culture condition. Biotechnol. 2014; 13 (6): 273-281.
Shayesteh F, Ahmad A, Usup G. Partial Characterization of an Anti-Candida albicans Bacteriocin Produced by a Marine Strain of Bacillus sp., Sh10. Adv J Food Sci Technol. 2015; 9 (9): 664-671.
Pridham TG, Gottlieb D. The utilization of carbon compounds by some actinomycetales as an aid for species determination. J Bacteriol. 1948; 56 (1): 107-114.
Rajaram, G, Manivasagan P, Thilagavathi B, Saravanakumar A. Purification and characterization of a bacteriocin produced by Lactobacillus lactis isolated from marine environment. Adv J Food Sci Technol. 2010; 2 (2): 138-144.
Seuk-Hyun K, Cheol A. Bacteriocin production by Lactococcus lactis KCA 2386 isolated from white kimchi. Food Sci Biotechnol. 2000; 9: 263-269.
Clinical and Laboratory Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 6th edn. 2003; CLSI Document M7-A6: Wayne.
Motta AS, Flores FS, Souto AA, Brandelli A. Antibacterial activity of a bacteriocin-like substance produced by Bacillus sp. P34 that targets the bacterial cell envelope. Antonie Van Leeuwenhoek. 2008; 93 (3): 275-284.
Zhou K, Zhou W, Li P, Liu G, Zhang, J. Mode of action of pentocin 31-1: An antilisteria bacteriocin produced by Lactobacillus pentosus from Chinese traditional ham. Food Control. 2008; 19 (8): 817-22.
Ames BN. Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol. 1966; 8: 115-118.
Chen Y, Montville TJ. Efflux of ions and ATP depletion induced by pediocin PA-1 are concomitant with cell-death in Listeria monocytogenes Scott-A. J Appl Microbiol. 1995; 79 (6): 684-90.
Maurya IK, Pathak, S, Sharma M, Sanwa H, Chaudhary P, Tupe S, Deshpande M, Chauhan VS, Prasad R. Antifungal activity of novel synthetic peptides by accumulation of reactive oxygen species (ROS) and disruption of cell wall against Candida albicans. Peptides. 2011; 32 (8): 1732-1740.
Sharma A, Srivastava SH. Anti-Candida activity of two-peptide bacteriocins, plantaricins (Pln E/F and J/K) and their mode of action. Fungal Biol. 2014; 118 (2): 264-275.
Herranz C, Chen Y, Chung HJ, Cintas LM, Hernandez PE, Montville TJ, Chikindas ML. Enterocin P Selectively Dissipates the Membrane Potential of Enterococcus faecium T136. Appl Environ Microbiol. 2001; 67 (4): 1689-1692.
Fujita K, Ichimasa S, Zendo T, Koga S, Yoneyama F, Nakayama J, Sonomoto k. Structural Analysis and Characterization of Lacticin Q, a Novel Bacteriocin Belonging to a New Family of Unmodified Bacteriocins of Gram-Positive Bacteria. Appl Environ Microbiol. 2007; 73 (9): 2871-2877.
Gonzalez B, Glaasker E, Kunji ERS, Driessen AJM, Suarez JE. Bactericidal mode of action of plantaricin C. Appl Environ Microbiol. 1996; 62 (8): 2701-2709.
Yurong G, Dapeng L, Yan Sh, Xiaoyan L. Mode of action of sakacin C2 against Escherichia coli. Food Control. 2011; 22 (5): 657-661.