کاربرد مقایسه ای الگوریتم ذرات و الگوریتم ژنتیک در پیش بینی روند بلندمدت و کوتاه مدت بازده سهام
الموضوعات :
1 - گروه حسابداری، دانشکده علوم انسانی، واحد تهران غرب، دانشگاه آزاد اسلامی،تهران ، ایران
2 - دانشکده علوم انسانی، واحد تهران غرب، دانشگاه آزاد اسلامی، تهران ایران.
الکلمات المفتاحية: کلمات کلیدی: الگوریتم ذرات, الگوریتم ژنتیک, هموار سازی داده, یادگیری ماشین, هوش مصنوعی,
ملخص المقالة :
چکیده عدم وجود قطعیت در روند حرکت بازار سهام پیش بینی آنرا به یک کار پرچالش در حوزهی پیشبینی سریهای زمانی مالی تبدیل کرده است. از سوی دیگر تحلیل دادههای سری زمانی قیمت های سهام به علت غیرخطی بودن و وجود نویز زیاد آسان نیست. از اینرو هدف این پژوهش پیش بینی روند بلندمدت و کوتاهمدت بازار سرمایه است. برای دستیابی به این هدف از الگوریتم های هوش مصنوعی ذرات و ژنتیک بصورت مقایسهای استفاده شده است. متغیر مورد مطالعه شاخص کل قیمت سهام در بورس اوراق بهادار تهران در دوره زمانی 1395 تا 1400 و بصورت ماهانه میباشد. دادهها پس از گردآوری با استفاده از روش هموارسازی برای روزهای تعطیل بازبینی شدهاند و به منظور افزایش دقت مدل ها طول پنجره بهینه هر الگوریتم محاسبه شده است. یافتههای حاصله بیانگر آن است که الگوریتم ژنتیک با به حداقل رساندن خطای پیش بینی یک الگوریتم مناسب برای پیش بینی روند کوتاه مدت و بلند مدت شاخص کل قیمت نسبت به الگوریتم ذرات در دوره زمانی مورد مطالعه است.