Structural characterization of BaZrO3 nanopowders prepared by stearic acid gel method
الموضوعات : Journal of the Iranian Chemical ResearchMorteza Enhessari 1 , Salah Khanahmadzadeh 2 , Keyvan Ozaee 3
1 - Department of Chemistry, Islamic Azad University, Naragh Branch, Naragh, Iran
2 - Department of Chemistry, Faculty of Science, Islamic Azad University, Mahabad Branch,, Mahabad,
Iran
3 - Young Researchers Club, Islamic Azad University, Naragh Branch, Naragh, Iran
الکلمات المفتاحية: TEM, SEM, Barium Zirconate, Wet-chemistry synthesis, Nanopowders, X-ray diffraction, FTIR,
ملخص المقالة :
Pure barium zirconate nanopowders were successfully prepared in wet-chemistry synthesismethod, using barium stearate and tetra-n-butyl zirconate as Ba, Zr sources and stearic acid ascomplexing reagent. The gel was calcined at 800 and 900 °C in air. Results of thermal analysisare given, including both DTG and TG. Fourier transform infrared spectrometry (FTIR), X-raydiffraction (XRD), transmission electron microscopy and (TEM) scanning electron microscopy(SEM) were used to characterize the crystallization process, the particle size and morphology ofthe calcined powders. The results indicated that barium zirconate nanopowders with particle sizebetween 20 and 25 nm could be obtained after calcinations of the dried gel at 900 °C for 2 h.
[1] A.M. Azad, S. Subramaniam, T.W. Dung, J. Alloys Compd., 334 (2002) 118-130.
[2] A. Erb, E. Walker, R. Flukiger, Physica C 245 (1995) 245-251.
[3] R. Vassen, X. Cao, F. Tietz, D. Basu, D. Stover, J. Am. Ceram. Soc. 83 (2000) 2023-2028.
[4] Z. Chen, S. Duncan, K.K. Chawla, M. Koopman, G.M. Janowski, Mater. Charact. 48 (2002) 305-314.
[5] H. Iwahara, T. Yajima, T. Hibino, K. Ozaki, H. Suzuki, Solid State Ionics 61 (1993) 65-69.
[6] M. Viviani, M.T. Buscaglia, V. Buscaglia, M. Leoni, P. Nanni, J. Eur. Ceram. Soc. 21 (2001) 1981-
1984.
[7] A. Manthiram, J.K. Kuo, J.B. Goodenough, Solid State Ionics 62 (1993) 225-234.
[8] R.C.T. Slade, S.D. Flint, N. Singh, Solid State Ionics 82 (1995) 135-141.
[9] S.M. Haile, Mater. Today 6 (2003) 24-29.
[10] H.S. Potdar, S.B. Deshpande, P.D. Godboole, S.K. Date, J. Mater. Res. 8 (1993) 948-950.
[11] J. Brzezinska Miecznik, K. Haberko, M.M. Bucko, Mater. Lett. 56 (2002) 273-278.
[12] F. Boschini, B. Robertz, A. Rulmont, R. Cloots, J. Eur. Ceram. Soc. 23 (2003) 3035-3042.
[13] G. Taglieri, M. Tersigni, P.L. Villa, C. Mondelli, J. Inorg. Mat. 1 (1999) 103-110.
[14] M. Veith, S. Mathur, N. Lecerf, V. Huch, T. Decker, H.P. Beck, J. Sol–Gel Sci. Technol. 17 (2000)
145-158.
[15] A. Magrez, T. Schober, Solid State Ionics 175 (2004) 585-588.
[16] A.M. Azad, S. Subramaniam, Mater. Res. Bull. 37 (2002) 85-97.
[17] Y.V. Kolenko, A.A. Burukhin, B.R. Churagulov, N.N. Oleinikov, A.S. Vanetsev, Inorg. Mater. 38
(2002) 252-255.
[18] A.A. Athawale, A.J. Chandwadkar, P. Karandikar, R. Pasricha, M.S. Bapat, Radiat. Phys. Chem. 75
(2006) 755-759.
[19] M.S. Sadjadi, K. Zare, S. Khanahmadzadeh, M. Enhessari, Materials Lett. 262 (2008) 3679-3681.
[20] P.K. Sharma, V.V. Varadan, V.K. Varadan, Chem. Mater. 12 (2000) 2590–2596.