Electrospun Nanofibrous Membranes as Potential Adsorbents for Textile Dye Removal-A review
الموضوعات :M. Hasanzadeh 1 , B. Hadavi Moghadam 2
1 - Department of Textile Engineering, University of Guilan, Rasht, Iran
2 - Department of Textile Engineering, University of Guilan, Rasht, Iran
الکلمات المفتاحية: Efficiency, wastewater, Electrospinning, Dye removal, Nanofibrous membrane,
ملخص المقالة :
Textile wastewaters due to the toxic effects of dyestuffs and other organic compounds and their stability toward light and oxidizing agents have led to an environmental problem. Several treatment methods for dye removal have been investigated. Membrane process is one of the simplest and most effective methods for dye removal from industrial wastewaters. Electrospun nanofibrous membranes have high specific surface area, high porosity, and small pore size. Therefore, they have been suggested as excellent candidates for many applications, especially in wastewater treatment. In this paper, we introduce the fundamental aspects of electrospun nanofibrous membranes and their properties, as well as highlight the enormous potential of nanofibrous membrane as adsorbents for textile dye removal. Finally, characteristic parameters for membrane performance are enumerated. Permeation flux, rejection, membrane porosity, permeability, molecular weight cut off, and decolorization are considered to be the most important ones.
- Vandevivere P.C., Bianchi R., Verstraete
- W., 1998. Treatment and reuse of
- wastewater from the textile wetprocessing
- industry: review of emerging
- technologies, J. Chem. Technol. Biot., 72,
- -302.
- Robinson T., McMullan G., Marchant R.,
- Nigam P., 2001. Remediation of dyes in
- textile effluent: a critical review on
- current treatment technologies with a
- proposed alternative, Bioresource.
- Technol., 77, 247-255.
- Banat I.M., Nigam P., Singh D.,
- Marchant R., 1996. Microbial
- decolourization of textile-dye containing
- effluents: a review, Bioresource.
- Technol., 58, 217âââ27.
- Slokar Y.M., Le Marechal A. M., 1998.
- Methods of decoloration of textile
- wastewaters, Dyes. Pigments., 37, 335âââ
- Deleôe W., ONeill C., Hawkes F.R.,
- Pinheiro H.M., 1998. Anaerobic
- treatment of textile effluents: a review, J.
- Chem. Technol. Biot., 73, 323âââ335.
- Cooper P., 1993. Removing color from
- dyehouse waste waters: a critical review
- of technology available, J. Soc. Dyers.
- Colorists., 109, 97âââ100.
- Crini G., Robert C., Gimbert F., Martel
- B., Adam O., De Giorgi F., 2008. The
- removal of Basic Blue 3 from aqueous
- solutions by chitosan based adsorbent:
- batch studies, J. Hazard. Mater., 153,
- âââ106.
- Dutta, P.K., Bhavani, K.D., Sharma, N.;
- Adsorption for dyehouse effluent
- by low cost adsorbent (chitosan), Asian.
- Text. J., 10, 57âââ63.
- Xu Y., Lebrun R.E., 1999. Treatment of
- textile dye plant effluent by nanofiltration
- membrane, Sep. Sci. Technol., 34, 2501âââ
- Bechtold T., Burtscher E., Turcanu A.,
- Cathodic decolorisation of textile
- wastewater containing reactive dyes
- using multi-cathode electrolyser, J.
- Chem. Technol. Biot., 76, 303âââ311.
- Papic S., Koprivanac N., Bozic A.L.,
- Metes A., 2004. Removal some reactive
- dyes from synthetic wastewater by
- combined Al (III) coagulation/carbon
- adsorption process, Dyes. Pigments., 62,
- âââ298.
- Akhtar N., Iqbal J., Iqbal M., 2004.
- Enhancement of Lead(II) biosorption by
- microalgal biomass immobilized onto
- Loofa (Luffa cylindrica) sponge, Eng.
- Life. Sci., 4, 171âââ178.
- Kahraman S., Asma D., Erdemoglu S.,
- Yesilada O., 2005. Biosorption of
- Copper(II) by live and dried biomass of
- the white rot fungi Phanerochaete
- chrysosporium and Funalia trogii, Eng.
- Life. Sci., 5, 72âââ77.
- Marrot B., Roche N., 2002. Wastewater
- treatment and reuse in textile industries, a
- review, Res. Adv. In Water Res., 3, 41-53.
- Aptel P., Buckley C.A., 1996. Categories
- of membrane operations. in ââËwater
- treatment: membrane processââ⢠(eds.:
- Mallevialle J., Odendaal P.E. and
- Winsner M.R.) McGraw-Hill, New York.
- Ondarçuhu T., Joachim C., 1998.
- Drawing a single nanofibre over
- hundreds of microns, Europhys. Lett., 42,
- âââ220.
- Feng L., Li S., Li Y., Li H., Zhang L.,
- Zhai J., Song Y., Liu B., Jiang L., Zhu
- D., 2002. Super-hydrophobic surfaces:
- from natural to artificial, Adv. Mater., 14,
- âââ1223.
- Ma P.X., Zhang R., 1999. Synthetic
- nano-scale fibrous extracellular matrix, J.
- Biomed. Mater. Res., 46, 60âââ72.
- Liu G., Ding J., Qiao L., Guo A., Dymov
- B.P., Gleeson J.T., Hashimoto T.K., Saijo
- K., 1999. Polystyrene-block-poly(2-
- cinnamoyl ethyl methacrylate)
- nanofibers preparation, characterization,
- and liquid crystalline properties. Chem-A
- Eur. J., 5, 2740âââ2749.
- Doshi J., Reneker D.H., 1995.
- Electrospinning process and applications
- of electrospun fibers, J. Electrostat., 35,
- âââ160.
- Shams Nateri A., Hasanzadeh M., 2009.
- Using fuzzy-logic and neural network
- techniques to evaluating polyacrylonitrile
- nanofiber diameter. J. Comput. Theor.
- Nanosci., 6, 1542-1545.
- Haghi A.K., Akbari M., 2007. Trends in
- electrospinning of natural nanofibers.
- Phys. Status. Solidi. A., 204, 1830-1834.
- Ziabari M., Mottaghitalab V., Haghi
- A.K., 2009. A novel approach for
- analysis of processing parameters in
- electrospinning of nanofibers. in
- ââËNanofibers: fabrication, performance,
- and applicationsââ⢠(ed. Chang W.N.) Nova
- Science Publishers, New York.
- Hadavi Moghadam B., Hasanzadeh M.,
- Haghi A.K. 2013. On the contact angle of
- electrospun polyacrylonitrile nanofiber
- mat. Bulg. Chem. Commun., 45, 169-177.
- Hasanzadeh M., Hadavi Moghadam B.,
- Moghadam Abatari M.H., Haghi A.K.,
- On the production optimization of
- polyacrylonitrile electrospun nanofiber.
- Bulg. Chem.Commun., 45, 178-190.
- Hadavi Moghadam B., Hasanzadeh M.,
- Predicting contact angle of
- electrospun polyacrylonitrile nanofiber
- mat by artificial neural networks and
- statistical techniques. Adv. Polym. Tech.,
- doi: 10.1002/adv.21365,
- Rabbi R., Nasouri K., Bahrambeygi H.,
- Shoushtari A.M., Babaei M.R., 2012.
- RSM and ANN approaches for modeling
- and optimizing of electrospun
- polyurethane nanofibers morphology.
- Fiber. Polym., 13, 1007-1014.
- Sabetzadeh N., Bahrambeygi H., Rabbi
- A., Nasouri K., 2012. Thermal
- conductivity of polyacrylonitrile
- nanofiber web in various nanofiber
- diameters and surface densities. Micro.
- Nano. Lett., 7, 662-666.
- Roà ¡ic R., Pelipenko J., Kristl J., Kocbek
- P., Baumgartner S., 2012. Properties,
- Engineering and Applications of
- PolymericNanofibers: Current Research
- and Future Advances. Chem. Biochem.
- Eng. Q., 26, 417âââ425.
- Andrady A.L., 2008. Science and
- technology of polymer nanofibers. Wiley,
- USA.
- Brown P.J., Stevens K., 2007. Nanofibers
- and nanotechnology in textiles.
- Woodhead, England.
- Sun Z., Zussman E., Yarin A.L.,
- Wendorff J.H., Greiner A., 2003.
- Compound core-shell polymer nanofibers
- by co-electrospinning, Adv. Mater., 15,
- -1932.
- Ramakrishna S., Fujihara K., Teo W.E.,
- Lim T.C., Ma Z., 2005. An introduction
- to electrospinning and nanofibers. World
- scientific, Singapore.
- Zussman E., Yarin A.L., Bazilevsky
- A.V., Avrahami R., Feldman M., 2006.
- Electrospun
- polyacrylonitrile/poly(methyl
- methacrylate)-derived turbostratic carbon
- micro-/nanotubes, Adv. Mater., 18, 348-
- Nasouri K., Shoushtari A.M., Kaflou A.,
- Bahrambeygi H., Rabbi A., 2012. Singlewall
- carbon nanotubes dispersion
- behavior and its effects on the
- morphological and mechanical properties
- of the electrospun nanofibers, Polym.
- Composite., 33, 1951-1959.
- Yang S.Y., Taha-Tijerina J., Serrato-Diaz
- V., Hernandez K., Lozano K., 2007.
- Dynamic mechanical and thermal
- analysis of aligned vapor grown carbon
- nanofiber reinforced polyethylene.
- Composites B, 38, 228âââ235.
- Bahrambeygi H., Sabetzadeh N., Rabbi
- A., Nasouri K., Shoushtari A.M., Babaei
- M.R., 2013. Nanofibers (PU and PAN)
- and nanoparticles (Nanoclay and
- MWNTs) simultaneous effects on
- polyurethane foam sound absorption. J.
- Polym. Res., 20, 1-10.
- Al-Saleh M.H., Sundararaj U., 2011.
- Review of the mechanical properties of
- carbon nanofiber/polymer composites.
- Composites A, 42, 2126-2142.
- Moridi Z., Mottaghitalab V., Haghi A.K.,
- A Detailed Review of Recent
- Progress in Carbon Nanotube/Chitosan
- Nanocomposites. Cellulose Chem
- Technol, 45, 549-563.
- Han L.F., Xu Z.L., Yu L.Y., Wei Y.M.,
- Cao Y., 2010. Performance of
- PVDF/multi-nanoparticles composite
- hollow fibre ultrafiltration membranes,
- Iran. Polym. J., 19, 553-565.
- Boerlage S. F. E., 2001. Scaling and
- particulate fouling in membrane filtration
- systems. Swets & Zeitlinger Publisher,
- Lisse.
- McDonald R., 1997. Colour physics for
- industry. Society of Dyers and
- Colourists, London.
- Dorthy C.A.M., Sivaraj R., Venckatesh
- R., 2012. Decolorization of reactive
- violet âââ 2RL dye by aspergillus flavus
- and aspergillus fumigatus from textile
- sludge, Int. Res. J. Environ. Sci., 1, 8-12