Physiological Analysis of Silver Nanoparticles and AgNO3 Effect to Brassica napus L.
الموضوعات :Mehrzad Sarabi 1 , Akbar Safipour Afshar 2 , Homa Mahmoodzadeh 3
1 - Department of Biology, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
2 - Department of Biology, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
3 - Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
الکلمات المفتاحية: Canola, Ag Nanoparticles, Germination indices, Bulk AgNO3, Seedling Biomass, Seedling length,
ملخص المقالة :
In this study, the effects of different concentrations of bulk and nano-sized Ag on seed germination and seedling growth of canola were investigated in a randomized completely design with four replications. The experimental treatments included four concentrations of bulk AgNO3 (10, 100, 500 and 1000 ppm), four concentrations of nanosized Ag (10, 100, 500 and 1000 ppm), and the control without Ag. Results indicated that among the canola germination indices only mean germination time and germination index were not affected by treatments. The TTC tests showed all root tips were colored red. It is concluded that bulk AgNO3 treatments inhibited germination indices of canola more than nano sized Ag.
- Stewart M.E., Anderton C.R., Thompson L.B., Maria J., Gray S.K., Rogers J.A., Nuzzo R.G., 2008. Nanostructure plasmonic sensors. Chem Rev. 108(2), 494âââ521.
- Nel A., Xia T., Mdler L., Li N., 2006. Toxic potential of materials at the nanolevel. Science. 311, 622âââ627.
- Roco M.C., 2003. Broader societal issue of nanotechnology. J Nanopart Res. 5(3âââ4), 181âââ89.
- Warheit D.B., 2004. Nanoparticles: health impacts? Mater Today. 32, 35-37.
- Fabrega J., Luoma S.N., Tyler C.R., Galloway T.S., Lead J.R., 2011. Silver nanoparticles: Behaviour and effects in the aquatic environment. Environ Int. 37, 517âââ531.
- Robichaud C.O., Tanzil D., Weilenmann U., Wiesner M.R., 2005. Relative risk analysis of several manufactured nanomaterials: An insurance industry context. Environ Sci Technol. 39, 8985âââ8994
- Benn T.M., Westerhoff P., 2008. Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol. 42, 4133-4139.
- Benn T., Cavanagh B., Hristovski K., Posner J.D., Westerhoff P., 2010. The release of nanosilver from consumer products used in the home. J Environ Qual. 39, 1875âââ1882.
- Wu Y., Zhou Q., Li H., Liu W., Wang T., Jiang G., 2010. Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test. Aquat Toxicol. 100,160âââ167.
- Zhao C.M., Wang W.X., 2011. Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna. Environ Toxicol Chem. 30, 885âââ892.
- Ratte H.T., 1999. Bioaccumulation and toxicity of silver compound. A review Environ Toxicol Chem. 18, 89âââ108.
- Stampoulis D., Sinha S.K., White J.C., 2009. Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol. 43, 9473âââ9479.
- Kumari M., Mukherjee A., Chandrasekaran N., 2009. Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ. 407, 5243âââ5246.
- Yin L., Cheng Y., Espinasse B., Colman P.B., Auffan M., Wiesner M., Rose J., Liu J., Bernhardt E.S., 2011. More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol. 45, 2360âââ2367.
- Kim E., Kim S.H., Kim H.C., Lee S.G., Lee S.J., Jeong S.W., 2011. Growth inhibition of aquatic plant caused by silver and titanium oxide nanoparticles. Toxicol Env Heal Sci. 3, 1âââ6.
- Gubbins E.J., Batty L.C., Lead J.R., 2011. Phytotoxicity of silver nanoparticles to Lemna minor L. Environ Pollut. 159, 1551âââ1559.
- Figueroa J.A., Armesto J.J., 2001. Community-wide germination strategies in a temprate rainforest of southern chile: ecological and evolutionary correlates. Austrulian J of Botany. 49, 411 âââ 425.
- Bu H.Y., Chen X.L., Xu X.L., Liu K., 2008. Community-wide germination strategies in an alpine meadow on the eastern Qinghai-Tibet plateau: phylogenetic and life-history correlates. Plant Ecology. 195, 87-98.
- Wu G.L., Du G.Z., 2007. Germination is related to seed mass in grasses (Poaceae) of the eastern Qinghai-Tibetan Plateau, China. Nordic J Botany. 25, 361-365.
- Shaymurat T., Gu J., Xu C., Yang Q., Zhao Q., Liu Y., Liu, Y., 2011. Phytotoxic and Genotoxic effect of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study. Nanotoxicology; Early Online, 1-8.
- Musante C., White J.C., 2012. Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environ Toxicol. 27(9), 510âââ517.
- Mazumdar H., Ahmed G.U., 2011. Synthesis of silver nanoparticles and its adverse effect on seed germinations in Oryza sativa, Vigna radiate and Brassica campestris. Int J Adv Biotechnol Res. 2(4), 404-413.
- Kuamri M., Mukherjee A.N., Chandrasekaran N., 2012. Effect of silver nanoparticles on protein and DNA content to tomato seed, cucumber and maize. Inter J Human Genetics Med Biotech Microbiol Stud. 1(1), 7-15.
- Lin D., Xing B., 2008. Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol. 42, 5580âââ5585.
- Lee W.M., An Y.J., Yoon H., Kweon H.S., 2008. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem. 27(9), 915-1921.
- Lin D., Xing B., 2007. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut. 150, 243âââ250.
- Barrena R., Casals E., Colon J., Font X., Sanchez A., Puntes V., 2009. Evaluation of the ecotoxicity of model nanoparticles. Chemosphere. 850, 857-875.
- El-Temsah Y.S., Joner E.J., 2012. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol. 27, 42âââ49.
- Liu J., Hurt R.H., 2010. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol. 44, 2169âââ2175.
- Zhao C.M., Wang W.X., 2012. Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna. Nanotoxicol. 6(4), 361âââ370.
- Ravindran A., Prathna T.C., Vinod Kumar V., Chandrasekaran N., Mukherjee A., 2012. Bovine serum albumin mediated decrease in silver nanoparticle phytotoxicity: root elongation and seed germination assay. Toxicol Environ Chem. 94(1), 91âââ98.