Review of Recent Advances in Treatment of Celiac Disease Using Enzymatic Gluten Degradation
الموضوعات :Mansooreh Hooshiyar 1 , Gholam Hossein Ebrahimi Pour 2 , Mohammad Rostami-Nejad 3 , Fahimeh Sadat Gholam-Mostafaei 4 , Kaveh Baghaei 5 , Alireza Emadi 6 , Vahid Khalaj 7
1 - Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
2 - Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
3 - Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
4 - Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
5 - Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
6 - Deputy of Research and Technology, Semnan University of Medical Sciences, Semnan, Iran
7 - Fungal Biotechnology Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
الکلمات المفتاحية: Wheat, Treatment, Celiac disease, Enzymatic gluten degradation, Aspergillus niger, Prolyl endopeptidase, Glutenase, Enzyme therapy,
ملخص المقالة :
Celiac disease (CD), a chronic inflammatory disorder, is triggered by the ingestion of gluten peptide. Wheat gluten contains gliadins and glutenins fractions, where gliadin peptides are the main cause of CD and nonceliac gluten sensitivity development. Keeping a strictgluten-free diet is the only effective treatment for CD. In recent years, lactic acid bacterial and fungal prolyl endopeptidases (PEP) have been proposed as the sources of proteolytic enzymes for the complete elimination of gluten peptides, and have also proved as a potential common therapeutic agent for CD treatment. Considering these indications, a special focus was devoted to AN-PEP-secreted PEP. Herein, we review the proteolytic enzymes produced by microorganisms, especially by the fungal strain, Aspergillus niger (AN), and discuss its beneficial properties against toxic effects of α-gliadin digestion in affected patients. The present review reveals the importance of proteolytic proteases in industrial applications; from an economic perspective, AN-PEP protease is an appropriate choice for making high-quality gluten-free products.
1. Ashtari S., Pourhoseingholi M.A., Rostami K., Aghdaei H.A., Rostami-Nejad M., Busani L., Tavirani M.R., Zali M.R., 2019. Prevalence of gluten-related disorders in Asia-Pacific region: a systematic review. Journal of Gastrointestinal & Liver Diseases. 28 (1), 95-105.
2. Rostami-Nejad M., Hejazi S.H., Peña A.S., Asadzadeh-Aghdaei H., Rostami K., Volta U., Zali M.R., 2018. Contributions of HLA haplotypes, IL8 level and Toxoplasma gondii infection in defining celiac disease's phenotypes. BMC Gastroenterology. 18(1), 66-71.
3. Schuppan D., Gisbert-Schuppan K., 2019. [How to recognize inflammatory wheat sensitivities]. MMW Fortschr Med.162(13):47-52.
4. Asri N., Rostami-Nejad M., Barzegar M., Nikzamir A., Rezaei-Tavirani M., Razzaghi M., Zali M.R., 2020. Suppressive Mechanisms Induced by Tregs in Celiac Disease. Iranian Biomedical Journal. 24(3), 140-147.
5. Taraghikhah N., Ashtari S., Asri N., Shahbazkhani B., Al-Dulaimi D., Rostami-Nejad M., Rezaei-Tavirani M., Razzaghi M.R., Zali M.R., 2020. An updated overview of spectrum of gluten-related disorders: clinical and diagnostic aspects. Bmc Gastroenterology. 20(1), 1-12.
6. Dvorak J., Horn M., 2018. Serine proteases in schistosomes and other trematodes. International Journal for Parasitology. 48(5), 333-344.
7. Jayedi A., Soltani S., Abdolshahi A., Shab-Bidar S., 2020. Healthy and unhealthy dietary patterns and the risk of chronic disease: an umbrella review of meta-analyses of prospective cohort studies. British Journal of Nutrition. 124(11), 1133-1144.
8. Jayedi A., Emadi A., Khan T.A., Abdolshahi A., Shab-Bidar S., 2020. Dietary fiber and survival in women with breast cancer: A dose-response meta-analysis of prospective cohort studies. Nutrition and Cancer. 1-11.
9. Tye-Din J.A., Galipeau H. J., Agardh D., 2018. Celiac disease: a review of current concepts in pathogenesis, prevention, and novel therapies. Frontiers in Pediatrics. 6, 350-60.
10. Wei G., Helmerhorst E. J., Darwish G., Blumenkranz G., Schuppan D., 2020. Gluten degrading enzymes for treatment of celiac disease. Nutrients. 12(7), 2095.
11. Yoosuf S., Makharia G.K., 2019. Evolving therapy for celiac disease. Frontiers in Pediatrics. 7, 193-201.
12. Balakireva A.V., Zamyatnin A.A., 2016. Properties of gluten intolerance: gluten structure, evolution, pathogenicity and detoxification capabilities. Nutrients. 8(10), 644-660.
13. Bascuñán K.A, Vespa M.C, Araya M,. 2017. Celiac disease: understanding the gluten-free diet. Eur J Nutr. 56(2):449-459.
14. Scherf K.A., Wieser H., Koehler P., 2018. Novel approaches for enzymatic gluten degradation to create high-quality gluten-free products. Food Research International. 110, 62-72.
15. Sharma N., Bhatia S., Chunduri V., Kaur S., Sharma S., Kapoor P., Kumari A., Garg M., 2020. Pathogenesis of celiac disease and other gluten related disorders in wheat and strategies for mitigating them. Frontiers in Nutrition. 7, 6-32.
16. Kaukinen K., Lindfors K., 2015. Novel treatments for celiac disease: glutenases and beyond. Digestive Diseases. 33(2), 277-281.
17. Schuppan D., Junker Y., Barisani D., 2009. Celiac disease: from pathogenesis to novel therapies. Gastroenterology. 137(6), 1912-1933.
18. Akeroyd M., van Zandycke S., den Hartog J., Mutsaers J., Edens L., van den Berg M., Christis C., 2016. AN-PEP, proline-specific endopeptidase, degrades all known immunostimulatory gluten peptides in beer made from barley malt. Journal of the American Society of Brewing Chemists. 74 (2), 91-99.
19. Rizzello C.G., Curiel J.A., Nionelli L., Vincentini O., Di Cagno R., Silano M., Gobbetti M., Coda R., 2014. Use of fungal proteases and selected sourdough lactic acid bacteria for making wheat bread with an intermediate content of gluten. Food Microbiology. 37, 59-68.
20. Eugster P.J., Salamin K., Grouzmann E., Monod M., 2015. Production and characterization of two major Aspergillus oryzae secreted prolyl endopeptidases able to efficiently digest proline-rich peptides of gliadin. Microbiology. 161(12), 2277-2288.
21. Tanner G.J., Colgrave M.L., Howitt C.A., 2014. Gluten, celiac disease, and gluten intolerance and the impact of gluten minimization treatments with prolylendopeptidase on the measurement of gluten in beer. Journal of the American Society of Brewing Chemists. 72(1), 36-50.
22. Stepniak D., Spaenij-Dekking L., Mitea C., Moester M., de Ru A., Baak-Pablo R., van Veelen P., Edens L., Koning F., 2006. Highly efficient gluten degradation with a newly identified prolyl endoprotease: implications for celiac disease. American Journal of Physiology-Gastrointestinal and Liver Physiology. 291 (4), G621-G629.
23. Heredia-Sandoval N.G., Valencia-Tapia M.Y., Calderón de la Barca A.M., Islas-Rubio A.R., 2016. Microbial proteases in baked goods: modification of gluten and effects on immunogenicity and product quality. Foods. 5(3), 59-69.
24. Gass J., Khosla C., 2007. Prolyl endopeptidases. Cellular and Molecular Life Sciences. 64(3), 345-355.
25. Badgujar S.B., Mahajan R.T., 2010. Badgujar S.B., 2010. Biological aspects of proteolytic enzymes: a review,2015. J Pharm Res. 3(9),2048-2068
26. Abdolshahi A., Marvdashti L.M., Salehi B., Sharifi‐Rad M., Ghobakhloo S., Iriti M., Sharifi‐Rad J., 2019. Antifungal activities of coating incorporated with Saccharomyces cerevisiae cell wall mannoprotein on Aspergillus flavus growth and aflatoxin production in pistachio (Pistacia vera L.). Journal of Food Safety. 39 (2), 126-31.
27. Ehren J., Govindarajan S., Morón B., Minshull J., Khosla C., 2008. Protein engineering of improved prolyl endopeptidases for celiac sprue therapy. Protein Engineering, Design & Selection. 21(12), 699-707.
28. Siegel M., Bethune M.T., Gass J., Ehren J., Xia J., Johannsen A., Stuge T.B., Gray G.M., Lee P.P., Khosla C., 2006. Rational design of combination enzyme therapy for celiac sprue. Chemistry & Biology. 13(6), 649-658.
29. Rizzello C.G., De Angelis M., Di Cagno R., Camarca A., Silano M., Losito I., De Vincenzi M., De Bari M.D., Palmisano F., Maurano F., 2007. Highly efficient gluten degradation by lactobacilli and fungal proteases during food processing: new perspectives for celiac disease. Applied and Environmental Microbiology. 73(14), 4499-4507.
30. Etxebeste O., Espeso E.A.,2020. Aspergillus nidulans in the post-genomic era: a top-model filamentous fungus for the study of signaling and homeostasis mechanisms. Int Microbiol.23(1):5-22.
31. Gänzle M.G., Loponen J., Gobbetti M., 2008. Proteolysis in sourdough fermentations: mechanisms and potential for improved bread quality. Trends in Food Science & Technology. 19(10), 513-521.
32. Abdolshahi A., Tabatabaiee Yazdi F., Shabani A.A., Mortazavi S.A., Mohammadi Nafchi A., 2016. Antifungal properties of gelatin-based coating containing mannoprotein from Saccharomyces Cerevisiae on Aspergillus flavus growth in pistachio. Journal of Mazandaran University of Medical Sciences. 26(139), 93-102.
33. H Walter T., Wieser H., Koehler P., 2015. Degradation of gluten in rye sourdough products by means of a proline-specific peptidase. Eur Food Res Technol. 240(3):517-524.
34. van Munster J.M., van der Kaaij R.M., Dijkhuizen L., van der Maarel M.J.E.C., 2012. Biochemical characterization of Aspergillus niger CfcI, a glycoside hydrolase family 18 chitinase that releases monomers during substrate hydrolysis. 158(Pt 8), 2168-2179.
35. Edens L., Dekker P., Van Der Hoeven R., Deen F., de Roos A., Floris R., 2005. Extracellular prolyl endoprotease from Aspergillus niger and its use in the debittering of protein hydrolysates. Journal of Agricultural and Food Chemistry. 53(20), 7950-7957.
36. Gaynor and Nutrition. Summary of Information Supporting the Generally Recognized as Safe (GRAS) Status of Acid ProlylEndopeptidase Produced by a Genetically Engineered Strainof Aspergillus niger 2019. (avalibale at: "G h RAS Notice (GRN) No. 832 https://www.fda.gov/food/generally-recognized-safe-gras/gras-notice-inventory).
37. Montserrat V., Bruins M.J., Edens L., Koning F., 2015. Influence of dietary components on Aspergillus niger prolyl endoprotease mediated gluten degradation. Food Chemistry. 174, 440-445.
38. Ehren J., Morón B., Martin E., Bethune M.T., Gray G.M., Khosla C., 2009. A food-grade enzyme preparation with modest gluten detoxification properties. PloS One. 4(7), e6313-323.
39. Walter T., Wieser H., Koehler P., 2015. Degradation of gluten in rye sourdough products by means of a proline-specific peptidase. European Food Research and Technology. 240(3), 517-524.
40. Mitea C., Havenaar R., Drijfhout J.W., Edens L., Dekking L., Koning F., 2008. Efficient degradation of gluten by a prolyl endoprotease in a gastrointestinal model: implications for coeliac disease. Gut. 57(1), 25-32.
41. König J., Holster S., Bruins M. J., Brummer R.J., 2017. Randomized clinical trial: Effective gluten degradation by Aspergillus niger-derived enzyme in a complex meal setting. Scientific Reports. 7(1), 13100-110.