Cadmium and Arsenic: A Deadly Duo for Diabetic Rats
الموضوعات :Saha Rajsekhar 1 , Thakur Alok Singh 2 , Kaur Chanchal Deep 3
1 - Ph.D Scholar, Shri Rawatpura Sarkar Institute of Pharmacy, Kumhari, Durg, India
2 - Associate Professor, Shri Shankaracharya Institute of Pharmaceutical Sciences, Junwani, Durg, India
3 - Principal and Professor, Rungta College of Pharmaceutical Sciences, Nandanvan, Raipur, India
الکلمات المفتاحية: Arsenic trioxide, Cadmium chloride, Diabetes, Heavy metals, Toxicity, Co administration,
ملخص المقالة :
This study investigates the synergistic impact of cadmium and arsenic co-exposure on diabetic rats, highlighting their intricate interplay within the context of diabetes. Male and female rats, induced with diabetes via streptozotocin, were exposed to cadmium chloride and arsenic trioxide. Blood glucose dynamics, organ histopathology, and vital functions were scrutinized to elucidate the toxicological consequences. Results revealed significant deviations in blood glucose levels, amylase concentrations, and kidney and liver functions, coupled with discernible impairments in vital organs. These findings underscore the formidable health risks posed by concurrent cadmium and arsenic exposure in diabetic individuals, emphasizing the urgent need for further research to unravel the underlying mechanisms and devise preventive measures. This study accentuates the necessity for continued exploration in this domain to mitigate the perilous consequences of such co-exposure, emphasizing the critical intersection of diabetes and heavy metal toxicity.
1. Jaishankar M., Tseten T., Anbalagan N., Mathew B.B., Beeregowda K.N., 2014.Toxicity mechanism and health effects of some heavy metals. Interdisciplinary Toxicology. 7(2), 60-72.
2. Sabir S.,Akah M.S.H.,Fiayyaz F.,Saleem U., Mehmood M.H.,Rehman K., 2019. Role of cadmium and arsenic as endocrine disruptors in the metabolism of carbohydrates: Inserting the association into perspectives. Biomedicine & Pharmacotherapy. 114, 108802.
3. Joshi S.R., Parikh R.M., 2007. India--diabetes capital of the world: now heading towards hypertension. Journal ofthe Association of Physicians in India. 55, 323–324.
4. Kumar A., Goel M.K., Jain R.B., Khanna P., Chaudhary V., 2013. India towards diabetes control: Key issues. Australasian Medical Journal. 6(10), 524–531.
5. Kaveeshwar S.A., Cornwall J., 2014. The current state of diabetes mellitus in India. Australasian Medical Journal. 7(1), 45–48.
6. Wild S.H., Roglic G., Green A., Sicree R., King H., 2004. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030.Diabetes Care. 27(10), 2569.
7. Schalkwijk C.G., Stehouwer C.D.A., 2005. Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clinical Science. 109(2), 143–159.
8. Thaiss C., Levy M., Grosheva I., Zheng D., Soffer E.,Blacher E., Braverman S., Tengeler A., Barak O.,Elazar M., Ben-Zeev R., Lehavi D., Katz M., Pevsner M., Gertler A., Halpern Z., Harmelin A., Aamar S., Serradas P., Grosfeld A., Shapiro H., Geiger B., Elinav E., 2018. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science. 359 (6382), 1376–1383.
9. Ghorani-Azam A., Riahi-Zanjani B., Balali-Mood M., 2016. Effects of air pollution on human health and practical measures for prevention in Iran. Journal of Research in Medical Sciences. 21(1), 65.
10. Balali-Mood M., Naseri K., Tahergorabi Z., Khazdair M.R., Sadeghi M., 2021. Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Frontiers in Pharmacology. 12, 643972.
11. Borowska S., Brzóska M., Gałażyn-Sidorczuk M., Rogalska J., 2017. Effect of an Extract from Aroniamelanocarpa L. Berries on the Body Status of Zinc and Copper under Chronic Exposure to Cadmium: An In-Vivo experimental study. Nutrients. 9(12), 1374.
12. Roy P., Saha A., 2002. Metabolism and toxicity of arsenic: A human carcinogen. Current Science. 82(1), 38–45.
13. Adriano D.C. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability and Risks of Metals, 2nd ed., Springer-Verlag: New York, 2004. pp. 264.
14. Rahimzadeh M.R., Rahimzadeh M.R., Kazemi S., Moghadamnia A.A., 2017. Cadmium toxicity and treatment: An update. Caspian Journal of Internal Medicin. 8(3), 135–145.
15. Staessen J.A., Roels H.A., Emelianov D., Kuznetsova T., Thijs L., Vangronsveld J., Fagard R., 1999. Environmental exposure to cadmium, forearm bone density, and risk of fractures: prospective population study. The Lancet. 353(9159), 1140–1144.
16. Umemura T., Wako Y., 2006. Pathogenesis of osteomalacia in Itai-itai disease. Journal of Toxicologic Pathology. 19(2), 69–74.
17. Jarup L., 2002. Cadmium overload and toxicity. Nephrology Dialysis Transplantation. 17(2), 35–39.
18. Furman B. L., 2015. Streptozotocin-induced diabetic models in mice and rats. Current Protocols in Pharmacology. 70(5), 1-20.
19. Cruz P.L., Moraes-Silva I.C., Ribeiro A.A., Machi J.F., De Melo M.D.T., Santos F.D., Da Silva M.B., Strunz C.M.C., Caldini E.G., Irigoyen M.C., 2021. Nicotinamide attenuates streptozotocin-induced diabetes complications and increases survival rate in rats: role of autonomic nervous system. BMC Endocrine Disorders. 21(1), 133.
20. Zhang W., Xue J., Ge M., Yu M., Liu L., 2013. Zhang, Z. Resveratrol attenuates hepatotoxicity of rats exposed to arsenic trioxide. Food and Chemical Toxicology. 51, 87–92.
21. Andjelkovic M., Djordjevic A.B., Antonijevic E., Antonijevic B., Stanic M., Kotur-Stevuljevic J., Spasojevic-Kalimanovska V., Jovanovic M., Boricic N., Wallace D., Bulat Z., 2019. Toxic effect of acute cadmium and lead exposure in rat blood, liver, and kidney. International Journal of Environmental Research and Public Health. 16(2), 274.
22. Ezedom T., Asagba S., Tonukari N.J., 2020. Toxicological effects of the concurrent administration of cadmium and arsenic through the food chain on the liver and kidney of rats. The Journal of Basic and Applied Zoology. 81, (16).10.1186/s41936-020-00146-2.
23. Lam R., Muniraj T., Hyperamylasemia. Stat Pearls. National Center for Biotechnology Information, U.S. National Library of Medicine. https://www.ncbi. nlm.nih.gov/books/NBK559273/ (Accessed Jan 23, 2023).
24. DeTata V., Bartke A., Illinois S., 2014. Age-related impairment of pancreatic beta-cell function: pathophysiological and cellular mechanisms. Frontiers in Endocrinology. 5, 138.
25. Lee D.H., Lee I.K., Porta M., Steffes M., Jacobs D.R., 2002. Relationship between serum concentrations of persistent organic pollutants and the prevalence of metabolic syndrome among non-diabetic adults: results from the National Health and Nutrition Examination Survey 1999. Diabetologia. 50(9), 1841–1851.
26. Whitcomb D.C., 2006. Acute pancreatitis. New England Journal of Medicine. 354(20), 2142–2150.
27. Santra A., Chowdhury A., Ghatak S., Biswas A., Dhali G.K., 2007. Arsenic induces apoptosis in mouse liver is mitochondria-dependent and is abrogated by N-acetylcysteine. Toxicology and Applied Pharmacology. 220(2), 146–155.
28. Goyer R.A., 1997. Toxic and Essential Metal Interactions. Annual Review of Nutrition. 17(1), 37–50.
29. Rani A., Kumar A., Lal A., Pant M., 2013. Cellular mechanisms of cadmium-induced toxicity: a review. International Journal of Environmental Health Research. 24(4), 378–399.
30. Orr S., Bridges C., 2017. Chronic kidney disease and exposure to nephrotoxic metals. International Journal of Molecular Sciences. 18(5), 1039.
31. Nguyen H.D., 2023. An evaluation of the effects of mixed heavy metals on prediabetes and type 2 diabetes: epidemiological and toxicogenomic analysis. Environmental Science and Pollution Research. 30(34), 82437–82457.
32. Singh R., Gautam N., Mishra A., Gupta R., 2011. Heavy metals and living systems: An overview. Indian Journal of Pharmacology. 43(3), 246.