سنتز و مشخصه یابی نانو ذرات ZrB2 با استفاده از روش سل- ژل
الموضوعات :ابوالحسن نجفی 1 , غلامرضا خلج 2 , میلاد رحمانی آزاد 3
1 - دانشگاه آزاد اسلامی واحد ساوه
2 - دانشگاه آزاد اسلامی واحدساوه
3 - دانشگاه آزاد اسلامی، واحد ساوه
الکلمات المفتاحية: فرایند سل-ژل, مزوپور, نانومواد, دی بوراید زیرکونیوم,
ملخص المقالة :
درتحقیق حاضر، نانوذرات ZrB2 با استفاده از روش سل-ژل سنتز شدند.از آلکوکسیدزیرکونیوم به عنوان منبع Zr واز اسید بوریک به عنوان منبع بور استفاده گردید.اندازه ذرات پیش سازنده در ابعاد نانومتری با استفاده از پارامتر pH در داخل سل کنترل شدندو تشکیل جوانه های اولیه فاز ZrB2 و میزان بلوری شده آنها با استفاده از پارامتر دما بررسی گردید. نتایج DLS نشان داد که اندازه ذرات پیش سازنده در داخل سل در عدد pH کمتر از5، زیر 10 نانومتر بودند. مخلوط کردن ذرات پیش سازنده در ابعاد مولکولی در داخل سل یکی از دلایل مهم در کاهش دمای سنتز ذرات ZrB2 بود. نتایج FTIR روی پیوندهای شیمیایی نشان داد که پیوندZr-B در داخل پودر ژل تشکیل شده است. نتایج DTA نشان داد که جوانه های اولیه ذرات ZrB2 در دمای حدود 1320 درجه سانتی گراد تشکیل شده است. مشاهدات XRD نشان داد که جوانه های اولیه فاز ZrB2در دمای حدود1500 درجه سانتی گراد کریستالیزه شده و رشد یافته اند.تحقیقات سطحی نشان داد که سطح ویژه ذرات سنتز شده ZrB2 معادل 115 متر مربع در گرم است و همچنین سطوح این ذرات متخلخل بوده و اندازه این تخلخل ها در محدوده مزو است. تجزیه و تحلیل SEM نشان داد که اندازه ذرات ZrB2 با مورفولوژی همگن در محدوده 50 نانومتر است. در نهایت، تجزیه و تحلیل ریزساختاری TEM نشان داد که ذرات ZrB2 به طور یکنواخت و منظم در ابعاد بسیار ریز تشکیل شده است.
- مراجع
[1] S. Q. Guo, "Densification of ZrB2-based composites and their mechanical and physical properties: a review", Journal of the European Ceramic Society, vol. 29, no. 6, pp. 995-1011, 2009.
[2] M. S. Asl, B. Nayebi, Z. Ahmadi, M. J. Zamharir & M. Shokouhimehr, "Effects of carbon additives on the properties of ZrB2–based composites: a review", Ceramics International, vol. 44, no. 7, pp. 7334-7348, 2018.
[3] R. Li, Y. Zhang, H. Lou, J. Li & Z. Feng, "Synthesis of ZrB2 nanoparticles by sol-gel method", Journal of sol-gel science and technology, vol. 58, no. 2, pp. 580-585, 2011.
[4] Y. Zhang, R. Li, Y. Jiang, B. Zhao, H. Duan, J. Li & Z. Feng, "Morphology evolution of ZrB2 nanoparticles synthesized by sol–gel method", Journal of Solid State Chemistry, vol. 184, no. 8, pp. 2047-2052, 2011.
[5] L. J. Yang, S. Z. Zhu, Q. Xu, Z. Y. Yan & L. Liu, "Synthesis of ultrafine ZrB 2 powders by sol-gel process", Frontiers of Materials Science in China, vol. 4, no. 3, pp. 285-290, 2010.
[6] D. Medveď, J. Balko, R. Sedlák, A. Kovalčíková, I. Shepa, A. Naughton-Duszová ... & J. Dusza, "Wear resistance of ZrB2 based ceramic composites", International Journal of Refractory Metals and Hard Materials, vol. 81, pp. 214-224, 2019.
[7] J. W. Zimmermann, G. E. Hilmas, W. G. Fahrenholtz, R. B. Dinwiddie, W. D. Porter & H. Wang, "Thermophysical properties of ZrB2 and ZrB2–SiC ceramics", Journal of the American Ceramic Society, vol. 91, no. 5, pp. 1405-1411, 2008.
[8] A. L. Chamberlain, W. G. Fahrenholtz, G. E. Hilmas & D. T. Ellerby, "High‐strength zirconium diboride‐based ceramics", Journal of the American Ceramic Society, vol. 87, no. 6, pp. 1170-1172, 2004.
[9] Y. Kagawa & S. Guo, "Ultrahigh Temperature Ceramic‐Based Composites", Ceramic Matrix Composites: Materials, Modeling and Technology, pp. 273-292, 2014.
[10] B. Nayebi, N. Parvin, J. A. Mohandesi & M. S. Asl, "Effect of Zr and C co-addition on the characteristics of ZrB2-based ceramics: role of spark plasma sintering temperature", Ceramics International, vol. 46, no. 16, pp. 24975-24985, 2020.
[11] M. S. Asl, B. Nayebi, M. Akhlaghi, Z. Ahmadi, S. A. Tayebifard, E. Salahi ... & M. A Mohammadi, "Novel ZrB2-based composite manufactured with Ti3AlC2 additive", Ceramics International, vol. 47, no. 1, pp. 817-827, 2021.
[12] M. Khoeini, A. Najafi, H. Rastegar & M. Amani, "Improvement of hollow mesoporous silica nanoparticles synthesis by hard-templating method via CTAB surfactant", Ceramics International, vol. 45, nol. 10, pp. 12700-12707, 2019.
[13] A. Najafi & S. Ghasemi, "A study of APC surfactant role on the surface characteristics, size and morphology improvements of synthesized mesoporous silica nanopowder through a sol-gel process", Journal of Alloys and Compounds, vol. 720, pp. 423-431, 2017.
[14] O. Fakhimi, A. Najafi & G. Khalaj, "A facile rout to obtain Al2O3 nanopowder via recycling aluminum cans by sol-gel method", Materials Research Express, vol. 7, no. 4, pp. 045008, 2020.
[15] A. Najafi, F. Golestani-Fard, H. R. Rezaie & N. Ehsani, "Synthesis and characterization ofsilicon carbide nano powder bysolgelprocessing", Iranian Journal of Materials Science and Engineering, vol. 8, no. 2, pp. 41-47, 2011.
[16] A. Najafi, F. Golestani-Fard, H. R. Rezaie & S. P. Saeb, "Sol-Gel synthesis and characterization of SiC–B4C nano powder", Ceramics International, vol. 47, no. 5, pp. 6376-6387, 2021.
[17] A. Najafi, F. Golestani-Fard, H. R. Rezaie & N. Ehsani, "A study on sol–gel synthesis and characterization of SiC nano powder", Journal of sol-gel science and technology, vol. 59, no. 2, pp. 205-214, 2011.
[18] I. S. Seog & C. H. Kim, "Preparation of monodispersed spherical silicon carbide by the sol-gel method", Journal of Materials Science, vol. 28, no. 12, pp. 3277-3282, 1993.
[19] A. Najafi, F. Golestani-Fard, H. R. Rezaie & N. Ehsani, "Synthesis and characterization of SiC nano powder with low residual carbon processed by sol–gel method. Powder technology, vol. 219, pp. 202-210, 2012.
[20] A. Najafi, F. Golestani-Fard & H. R. Rezaie, "Sol-gel synthesis and characterization of B4C nanopowder", Ceramics International, vol. 44, no. 17, pp. 21386-21394, 2018.
[21] Najafi, A. Golestani-Fard, F. & Rezaie, H. R. Improvement of SiC nanopowder synthesis by sol–gel method via TEOS/resin phenolic precursors. Journal of Sol-Gel Science and Technology, 75(2), 255-263, 2015.
[22] Z. Chen, X. Zhao, M. Li, H. Wang, Q. Li, G. Shao & L. An, "Synthesis of rod-like ZrB2 crystals by boro/carbothermal reduction", Ceramics International, vol. 45, no. 11, pp. 13726-13731, 2019.
[23] H. Shen, X. Li, C. Hu, Z. Wang, X. Hu, Y. Li & J. Yan, "Effect of dispersants on the physicochemical properties of ultra-fine ZrB2 powder in Sol-gel synthesis", Surfaces and Interfaces, vol. 25, pp. 101162, 2021.
[24] B. Yang, J. Li, B. Zhao, Y. Hu, T. Wang, D. Sun & T. Sato, "Synthesis of hexagonal-prism-like ZrB2 by a sol–gel route", Powder technology, vol. 256, pp. 522-528, 2014.
[25] H. Ji, M. Yang, M. Li, G. Ji, H. Fan & X. Sun, "Low-temperature synthesis of ZrB2 nano-powders using a sorbitol modified sol–gel processing route", Advanced Powder Technology, vol. 25, no. 3, pp. 910-915, 2014.
[26] H. Yang, J. Zhang, J. Li, Q. Shen & L. Zhang, "In-situ passivation reaction for synthesis of a uniform ZrO2-coated ZrB2 powder in alkaline hydrothermal solution", Surface and Coatings Technology, vol. 385, pp. 125385, 2020.
[27] P. Kiryukhantsev-Korneev, A. Sytchenko, Y. Kaplanskii, A. Sheveyko, S. Vorotilo & E. Levashov, "Structure, Corrosion Resistance, Mechanical and Tribological Properties of ZrB2 and Zr-BN Coatings", Metals, vol. 11, no. 8, pp. 1194, 2021.
[28] C. Liu, X. Chang, Y. Wu, X. Li, Y. Xue, X. Wang & X. Hou, "In-situ synthesis of ultra-fine ZrB2–ZrC–SiC nanopowders by sol-gel method", Ceramics International, vol. 46, no. 6, pp. 7099-7108, 2020.
[29] Y. Miao, X. Wang & Y. Cheng, "Carbon nanotube/titanium carbide sol-gel coated zirconium diboride composites prepared by spark plasma sintering", Ceramics International, vol. 44, no. 16, pp. 19262-19267, 2018.
[30] S. Song, R. Li, L. Gao, C. Sun, P. Hu & Q. Zhen, "Synthesis and growth behavior of micron-sized rod-like ZrB2 powders", Ceramics International, vol. 44, no. 5, pp. 4640-4645, 2018.
[31] F. Li, Y. Cao, J. Liu, H. Zhang & S. Zhang, "Oxidation resistance of ZrB2 and ZrB2-SiC ultrafine powders synthesized by a combined sol-gel and boro/carbothermal reduction method", Ceramics International, vol. 43, no. 10, pp. 7743-7750, 2017.
_||_