تأثیر پلاتین بر رفتار خوردگی داغ نوع II پوششهای سیلیسیم-آلومیناید حاوی سیلیسیم زیر حد بحرانی
الموضوعات :سیدامیر آذرمهر 1 , کوروش شیروانی جوزدانی 2
1 - سازمان پژوهشهای علمی و صنعتی ایران
2 - سازمان پژوهشهای علمی و صنعتی ایران
الکلمات المفتاحية: پلاتین, پوشش های سیلیسیم-آلومیناید, خوردگی داغ نوع II, انحلال اسیدی, سوپرآلیاژ GTD-111,
ملخص المقالة :
در این مقاله اثر اضافه شدن مقدار کم پلاتین به پوشش های سیلیسیم-آلومیناید دوغابی حاوی سیلیسیم کمتر از مقدار لازم برای ایجاد حفاظت کامل در این پوشش ها بررسی شده است. ضمن بررسی ریزساختار پوشش های حاصل، نقش پلاتین بر رفتار خوردگی داغ نوع II پوشش ها نیز مورد بحث قرار گرفته است. برای ایجاد پوشش های سیلیسیم و (پلاتین، سیلیسیم)-آلومیناید از روش سیلیکوآلومینایزنیگ دوغابی بر روی نمونه های از جنس سوپر آلیاژ پایه نیکل GTD-111 که قبلاً بر روی برخی از آنها لایهای پلاتین با ضخامت 2 میکرومتر آبکاری شده بود، استفاده شد. مقدار سیلیسیم در دوغاب معادل 10 درصد وزنی نسبت به کل جامد دوغاب انتخاب شد تا مقدار سیلیسیم در پوشش حاصل کمتر از مقدار بحرانی لازم برای حفاظت کامل باشد. آزمون خوردگی داغ نوع II به روش کوره ای با استفاده رسوب نمکی با ترکیب Na2SO4-60mol%V2O5 در دمای 700 درجه سانتیگراد انجام شد. پس از 20 ساعت خوردگی داغ، اکسید محافظ Al2O3 و اکسید غیرمحافظ NiAl2O4 به ترتیب در پوشش های سیلیسیم-آلومیناید با و بدون پلاتین شناسایی شد. در عدم حضور پلاتین، فاز Ni3V2O8 نیز تشخیص داده شد که محصول انحلال NiO و NiAl2O4 در شرایط خوردگی داغ می باشد. در پایان 80 ساعت خوردگی داغ، برخلاف پوشش سیلسیم-آلومیناید، هنوز سیلیسیم در ساختار پوشش (پلاتین، سیلیسیم)-آلومیناید باقیمانده وجود داشت.
[1] C. Sims, “The superalloysˮ, Edited by CT Sims and WC Hagel, John Wiley Pub., New York, 1972.
[2] J. Göbel & F. Pettit, “Na2SO4-induced accelerated oxidation (hot corrosion) of nickel”, Met. and Mat. Trans. B, Vol. 1, pp. 1943-1954, 1970.
[3] K. Luthra & D. Shores, “Mechanism of Na2SO4Induced Corrosion at 600°–900°C”, J. of the Elec. Soc., Vol. 127, pp. 2202-2210, 1980.
[4] J. Göbel, F. Pettit & G. Goward, “Mechanisms for the hot corrosion of nickel-base alloys”, Met. and Mat. Trans. B, Vol. 4, pp. 261-278, 1973.
[5] R. A. Rapp & K. Goto, “The hot corrosion of metals by molten salts, Proceedings of the Second International Symposium on Molten Salts”, Physical Electrochemistry Division, Electrochemical Society, pp. 159, 1981.
[6] R. A. Rapp, “Chemistry and electrochemistry of hot corrosion of metals”, Mat. Sci. and Eng., Vol. 87, pp. 319-327, 1987.
[7] R. A. Rapp & Y. S. Zhang, “Hot corrosion of materials: fundamental studies”, JOM, Met. and Mat. Soc., Vol. 46, pp. 47-55, 1994.
[8] R. A. Rapp, “Hot corrosion of materials: a fluxing mechanism?”, Corr. Sci., Vol. 44, pp. 209-221, 2002.
[9] M. Moliere & J. Sire, “Heavy duty gas turbines experience with ash-forming fuels”, J. de Phys. IV Coll., pp. 719-730, 1993.
[10] N. Birks, G. H. Meier & F. S. Pettit, “Introduction to the high temperature oxidation of metals”, Cambridge University Press, 2006.
[11] Y. Zhang & R. Rapp, “Solubilities of CeO2, HfO2 and Y2O3 in fused Na2SO4-30 mol% NaVO3 and CeO2 in pureNa2SO4 at 900°C”, Corrosion, Vol. 43, pp. 348-352, 1987.
[12] Y. Hwang & R. Rapp, “Thermochemistry and solubilities of oxides in sodium sulfate-vanadate solutions”, Corrosion, Vol. 45, pp. 933-937, 1989.
[13] R. Streiff & D. Boone, “Corrosion resistant modified aluminide coatings”, J. of Mat. Eng., Vol. 10, pp. 15-26, 1988.
[14] G. Meier & F. Pettit, “High-temperature corrosion of alumina-forming coatings for superalloys”, Sur. and Coat. Tech., Vol. 39, pp. 1-17, 1989.
[15] G. Tatlock & T. Hurd, “Platinum and the hot corrosion behaviour of a nickel based superalloy”, Materials and Corrosion, Vol. 41, pp. 710-715,1990.
[16] M. N. Task, B. Gleeson, F. S. Pettit & G. H. Meier, “Compositional factors affecting protective alumina formation under type II hot corrosion conditions”, Oxid. of Met., Vol. 80, pp. 541-552, 2013.
[17] K. Shirvani & A. Rashidghamat, “Evolution of oxide scale on aluminide and Pt-aluminide coatings exposed to type I (870°C) hot corrosion”, Oxid. of Met., Vol. 85, pp. 75-85, 2016.
[18] H. Grünling & R. Bauer, “The role of silicon in corrosion-resistant high temperature coatings”, Thin Solid Films, Vol. 95, pp. 3-20, 1982.
[19] T. W. Kerr, “Hot corrosion and oxidation studies of pure nickel and Ni-Cr, Ni-Si and Ni-Cr-Si alloys at 1000°C”, DTIC-ADA024708, 1975.
[20] B. G. Kim, G. M. Kim & C. J. Kim, “Oxidation behavior of TiAl-X (X= Cr, V, Si, Mo or Nb) intermetallics at elevated temperature”, Scr. Met. et Mat., Vol. 33, pp. 1117-1125, 1995.
[21] B. Li, B. Gleeson, “Effects of silicon on the oxidation behavior of Ni-base chromia-forming alloys”, Oxid. of Met., Vol. 65, pp. 101-122, 2006.
[22] K. Shirvani, M. Saremi, A. Nishikata & T. Tsuru, “The role of silicon on microstructure and high temperature performance of aluminide coating on superalloy In-738LC”, Mat. Trans., Vol. 43, pp. 2622-2628, 2002.
[23] D. Z. Shi & R. A. Rapp, “Solubility of SiO2 in fused Na2SO4 at 900°C”, J. Electrochem. Soc., Vol. 133, pp. 849-850, 1986.
[24] G. E. Creech & M. J. Barber, “Method of forming platinum-silicon-enriched diffused aluminide coating on a superalloy substrate, General Motors Coorporation”, US 5, Vol. 057, pp. 196, 1991.
[25] B. R. Rose & P. R. Lavery, “Platinum group silicide modified aluminide coating process and products”, Walbar Inc., US 5, Vol. 492, pp. 726, 1996.
[26] B. G. McMordie & T. A. Kircher, “Platinum enriched, silicon-modified corrosion resistant aluminide coating”, Sermatech International, Inc., US 5, Vol. 650, pp. 235, 1997.
[27] S. A. Azarmehr, K. Shirvani, M. Schütze & M. Galetz, “Microstructural evolution of silicon-platinum modified aluminide coatings on superalloy GTD-111”, Sur. and Coat. Tech., Vol. 321, pp. 455-463, 2017.
[28] K. Shirvani, M. Saremi & Y. Yamamoto, “The approaches to thin film preparation and TEM observations on slurry Si-modified aluminide coatings”, Mat. and Corr., Vol. 57, pp. 182-184, 2006.
[29] M. Galetz, X. Montero & H. Murakami, “Novel processing in inert atmosphere and in air to manufacture high‐activity slurry aluminide coatings modified by Pt and Pt/Ir”, Mat. and Corr., Vol. 63, pp. 921-928, 2012.
[30] H. M. Tawancy, N. Sridhar, N. M. Abbas & D. Rickerby, “Comparative thermal stability characteristics and isothermal oxidation behavior of an aluminized and a Pt-aluminized Ni-base superalloy”, Scr. Met. et mat., Vol. 33, pp. 1431-1438, 1995.
[31] B. M. Warnes, F. S. Pettit & G. H. Meier, “Hot-corrosion resistance of Ni–Cr–Al–Y and Ni–18% Si alloys in sulfate eutectic and sulfate plus vanadate melts at 973 K”, Oxid. of Met., Vol. 58, pp. 487-498, 2002.
[32] M. Seiersten & P. Kofstad, “Sodium vanadate-induced corrosion of nickel and MCrAIY coatings on Inconel 600”, Mat. Sci. and Tech., Vol. 3, pp. 576-583, 1987.
[33] M. Seiersten, H. J. Rätzer‐Scheibe & P. Kofstad, “Sodium vanadate induced corrosion of MCrAlY coatings–Burner rig studies”, Mat. and Corr., Vol. 38, pp. 532-540, 1987.
[34] E. M. Levin, C. R. Robbins, H. F. McMurdie & M. Reser, American Cer. Soc., Phase diagrams for ceramists, 1964.
[35] B. Gleeson, W. Wang, S. Hayashi & D. J. Sordelet, “Effects of platinum on the interdiffusion and oxidation behavior of Ni-Al-based alloys”, Mat. Sci. Forum, pp. 213-222, 2004.
[36] K. A. Marino & E. A. Carter, “The effect of platinum on diffusion kinetics in β‐NiAl: implications for thermal barrier coating lifetimes”, Chem. Phys. Chem., Vol. 10, pp. 226-235, 2009.
[37] K. A. Marino & E. A. Carter, “The effect of platinum on Al diffusion kinetics in β-NiAl: Implications for thermal barrier coating lifetime”, Acta Mat., Vol. 58, pp. 2726-2737, 2010.
[38] X. Montero & M. C. Galetz, “Coatings for boiler components exposed to vanadium-containing oil ash in oxidizing atmosphere”, Oxid. of Met., Vol. 87, pp. 717-727, 2017.
_||_