مقایسه دوازده هفته تمرین تناوبی شدید و تداومی با شدت متوسط بر بیان پروتئینهای میتوکندریاییPGC1α و Tfam در عضله دوقلوی رتهای سالمند
الموضوعات :
فصلنامه زیست شناسی جانوری
علی بختیاری
1
,
عباسعلی گائینی
2
,
سیروس چوبینه
3
,
محمدرضا کردی
4
,
مهدی هدایتی
5
1 - گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه تهران، تهران، ایران
2 - گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه تهران، تهران، ایران
3 - گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه تهران، تهران، ایران
4 - گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه تهران، تهران، ایران
5 - مرکز تحقیقات درمان و پیشگیری از چاقی، پژوهشکده علوم غدد درون ریز و متابولیسم، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی شهید بهشتی، تهران، ایران
تاريخ الإرسال : 05 الجمعة , رمضان, 1440
تاريخ التأكيد : 04 الثلاثاء , محرم, 1441
تاريخ الإصدار : 22 السبت , محرم, 1441
الکلمات المفتاحية:
سالمندی,
زیستزایی میتوکندریایی,
تمرینتناوبیخیلیشدید,
تمرین تداومی با شدت متوسط,
ملخص المقالة :
تمرین استقامتی به افزایش پروتئین ها، آنزیم ها و عملکرد میتوکندریایی در نمونه های انسانی و حیوانی منجر می شود. هدف پژوهش حاضر مقایسه 12 هفته تمرین تناوبی شدید (HIIT) و تداومی با شدت متوسط (MICT) بر بیان پروتئینهای میتوکندریایی PGC-1a و TFAM در عضله دوقلو رتهای سالمند بود. در این مطالعه تعداد 45 رت نژاد ویستار سالمند ۲۲ ماهه (۳۲۵-۳۷۵ گرم) تصادفی به سه گروه HIIT، تمرین تداومی با MICT و گروه کنترل تقسیم شدند. تمرین ورزشی در گروه HIIT در هفته اول ۲۰ دقیقه(2 دقیقه با شدت 85 تا 90 درصد VO2max و 2 دقیقه بازیافت (با شدت 45 تا 50 درصد VO2max) آغاز شد و در هفته دوازدهم به ۴۸ دقیقه رسید. برنامه تمرینی در گروه MICT با ۲۰ دقیقه (با شدت 65 تا 70 درصد VO2max) آغاز و در هفته دوازدهم به ۴۸ دقیقه رسید. مقادیر بیان پروتئین های PGC-1α و Tfam عضله دوقلو به روش وسترن بلات سنجیده شد. از روش آماری تحلیل واریانس-یک راهه برای تجزیه تحلیل داده ها استفاده شد. بیان پروتئین PGC-1α در دو گروه HIIT (001/0 > p) و MICT (01/0 > p) در مقایسه با گروه کنترل افزایش معناداری داشت. همچنین، مقادیر پروتئین PGC-1α در گروه HIIT در مقایسه با گروه MICT افزایش معناداری داشت (01/0 > p). بیان پروتئین Tfam در گروه HIIT (01/0 > p) و MICT (05/0 > p) در مقایسه با گروه کنترل افزایش معناداری داشت. HIIT در مقایسه با MICT به افزایش بیشتر بیان پروتئین های PGC-1α و Tfam در عضله دوقلوی رت های سالمند شده منجر است.
المصادر:
Bækkerud F.H., Solberg F., Leinan I.M., Wislff U., Karlsen T., 2016. Comparison of three popular exercise modalities on VO2max in overweight and obese Medicine and Science in Sports and Exercise, 100(48): 491-498.
Bai P., Canto C., Oudart H., Brunyanszki A., Cen Y.N., Thomas C., Yamamoto A., Kiss B., Houtkooper R.H., Schoonjans K., Schreiber V., Sauve A.A., 2011. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metabulism, 20(4): 461-468.
Billat L.V., 2001. Interval training for performance: a scientific and empirical practice. Sports Medicine, 40(31): 13-31.
Brenmoehl J., Hoeflich A., 2013. Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3. Mitochondrion, 13(6): 755-761.
Chounghun K., Eunhee C., 2010. Exercise training attenuates aging-associated mitochondrial dysfunction in rat skeletal muscle: Role of PGC-1α. Archives of Biochemistry and Biophysics, 501(12): 79-90.
Dae Yun Seo., Sung Ryul Lee., Nari Kim., Kyung S.K. 2016. Age-related changes in skeletal muscle
mitochondria: the role of exercise., Integral Medical Research, 30(5): 182-189.
Erika K., Zsofia S., Mustafa A., Istvan B., Hisashi N., Sataro G., 2017. Exercise alters SIRT1, SIRT6, NAD and NAMPT levels in skeletal muscle of aged rats. The Journals of Gerontology, 40(22): 76-83.
Granata C., Oliveira R., 2016. Mitochondrial adaptations to high-volume exercise training are rapidly reversed after a reduction in training volume in human skeletal muscle. FASEB Journal, 40(6): 100-125.
Hatle H., Stobakk P.K., Molmen H.E., Bronstad E., Tjonna A.E., Steinshamn S., 2014. Effect of 24 sessions of high-intensity aerobic interval training carried out at either high or moderate frequency, a randomized trial. PLoS One, 9, 88-75.
Holloszy J.O., Coyle E.F., 1984. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 120(56): 831-838.
Hoydal M.A., Wisloff U., Kemi O.J., Ellingsen O., 2007. Running speed and maximal oxygen uptake in rats and mice: practical implications for exercise training. European Journal of Cardiovascular Prevention and Rehabilitation, 14(6): 753-60.
Johnson ML., Irving B.A., Lanza I.R., Vendelbo M.H., Konopka A.R., Robinson M.M., 2014. Differential effect of endurance training on mitochondrial protein damage, degradation, and acetylation in the context of aging. The Journals of Gerontology Series. 70(11). 359-365.
Kang T., 2013. Exercise training attenuates aging-associated mitochondrial dysfunction in rat skeletal muscle: role of PGC-1alpha. Experimental Gerontology,78(48): 1343-1350.
Khosravan S.H., Alaviani M., Alami A., Tavakolizadeh J., 2014. Epidemiology of loneliness in elderly women. Journal of Research and Health., 80(4): 871-733.
Lanza I.R., Nair K.S., 2009. Muscle mitochondrial changes with aging and exercise. The American Journal of Clinical Nutrition. 89(1): 467S-71S.
Martin J., MacInnis T., Gibala K., 2017 Physiological adaptations to interval training and the role of exercise intensity. Journal of Physiology, 100(9) 2915-2930.
Masataka S., Hiroshi N., Zsolt R., Shuzo K., 2008. Endurance exercise increases the SIRT1 and peroxisome proliferator-activated receptor γ coactivator-1α protein expressions in rat skeletal muscle. Metabolism Clinical and Experimental Journal, 112(56): 986–998.
Morris B.J., 2013. Seven sirtuins for seven deadly diseases of aging. Free Radical Biology and Medicine, 120(56): 133-171.
O’Hagan K.A., Cocchiglia S., Zhdanov A.V., Tambawala M., Cummins E.P., Monfared M., Agbor T.A., Garvey J.F., Papkovsky D.B., Taylor C.T., Allan B.B., 2009. PGC-1{alpha} is coupled to HIF-1{alpha}-dependent gene expression by increasing mitochondrial oxygen consumption in skeletal muscle cells. Proceedings of the National Academy of Sciences of the United States of America22(13): 755-761.
Ramis R., Esteban S., Miralles A., Reiter R.J., 2015. Caloric restriction, resveratrol and melatonin: Role of SIRT1 and implications for aging andrelated-diseases. Mechanisms of Ageing and Development, 146(4): 28-41.
Sahin E., Colla S., Liesa M., Moslehi J., Muller F.L., 2011. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature, 470(7334): 359-365.
Seldeen K.L., Lasky G., Leiker M.M., Pang M., Personius K.E., Troen B.R., 2017. High Intensity Interval Training (HIIT) improves physical performance and frailty in aged mice. The Journals of Gerontology, 36 (16): 112-120.
Sharafi D., Soori R., Rastegar Mansouri., 2017. The Effect of High Intensity Interval Training on Muscular Biomarkers of Mitochondrial Biogenesis in Male Rats. Journal of Babol University of Medical Sciences, 120(9): 57-63 (In Persian).
Thomas R., Robergs R.A., Pascoe D., Lambert C., 1991. Adaptations to swimming training: influence of training volume. Medicine and Science in Sports and Exercise, 78(23): 371-377.
Ungvari Z., Sonntag W.E., Csiszar A., 2010. Mitochondria and aging in the vascular system. Journal of Molecular Medicine, 25(5): 1021-1027.
Yujia Y., Philip N., Younan L., 2016. Regulation of SIRT1 in aging: Roles in mitochondrial function and biogenesis. Mechanisms of Ageing and Development. 155(4): 10-21.
26. Yoho K., Matthew T., 2017. Hood Impact of Aging and Exercise on Mitochondrial Quality Control in Skeletal Muscle. Oxidative Medicine and Cellular Longevity, 66(5): 21-27.
Zoltan B., Zhongfu Z., Erika I., 2012. The effects of aging, physical training, and a single bout of exercise on mitochondrial protein expression in human skeletal muscle. Experimental Gerontology, 47(6): 417-424.
_||_