The role of nanobiosensors in identifying pathogens and environmental hazards
الموضوعات :Ramin Mohammadi Aloucheh 1 , Yousef Alaee Mollabashi 2 , Asadollah Asadi 3 , Ozlem baris 4 , Somayeh Gholamzadeh 5
1 - Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran
2 - 2Ardabil Branch, Islamic Azad University, Ardabil, Iran
3 - Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran.
4 - Department of Nanoscience and Nanoengineering, Institute of Natural and Applied Science, Atatürk University, 25240 Erzurum, Turkey.
5 - Department of Biology, Faculty of Science,Urmia pnu University, Urmia, Iran
الکلمات المفتاحية: environment, identification, Pathogens, Keywords: NanoBiosensor,
ملخص المقالة :
Abstract:The bringing human populations to cities and increasing urban living and creation of quick human progress in agriculture and industry have caused a lot of pollution. One of the main concerns that exist today is the identification and elimination of environmental pollution. The environmental pollution through heavy metals has become one of the biggest issues facing human societies today. There are several methods to identify such contaminations, but the use of nanobiosensors is the best method. Biosensors are divided to different types according to how the signals are transmitted, such as optical, magnetic, etc. In addition, nanobiosensors identify biologically pathogens such as bacteria, viruses and the like with high accuracy and sensitivity. In addition to identifying heavy metals and environmental contaminants, nanobiosensors have replaced time-consuming and expensive methods. The yeast biosensors are a good example of these biosensors. Considering all the results and activities carried out, designing and researching on the construction of new nanosensors, monitoring and caring for more human activities can have desirable results.
Abbasi S, Ali Mohammadian H, Hosseini SM. Khorasani N, Karbasi AR, Aslani A, (2017) The concentration of heavy metals in precipitated particles on the leaves of street side trees in the urban environments(Tehran– Iran), Anthropogenic Pollution Journal, 1(1): 1-8.
Abu-Ali, H., Nabok, A., Smith, T., & Al-Shanawa, M. (2017). Development of electrochemical inhibition biosensor based on bacteria for detection of environmental pollutants. Sensing and Bio-Sensing Research, 13, 109-114.
Alamer, S., Chinnappan, R., & Zourob, M. (2017). Development of rapid immuno-based nanosensors for the detection of pathogenic bacteria in poultry processing plants. Procedia Technology, 27, 23-26.
Ansari, M. H., Hassan, S., Qurashi, A., & Khanday, F. A. (2016). Microfluidic-integrated DNA nanobiosensors. Biosensors and Bioelectronics, 85, 247-260
Asaduzzaman, K., Khandaker, M. U., Baharudin, N. A. B., Amin, Y. B. M., Farook, M. S., Bradley, D. A., & Mahmoud, O. (2017). Heavy metals in human teeth dentine: A bio-indicator of metals exposure and environmental pollution. Chemosphere, 176, 221-230.
Bae, J., Lim, J. W., & Kim, T. (2018). Reusable and storable whole-cell microbial biosensors with a microchemostat platform for in situ on-demand heavy metal detection. Sensors and Actuators B: Chemical, 264, 372-381.
Bereza-Malcolm, L., Aracic, S., Kannan, R., Mann, G., & Franks, A. E. (2017). Functional characterization of Gram-negative bacteria from different genera as multiplex cadmium biosensors. Biosensors and Bioelectronics, 94, 380-387.
Bidmanova, S., Kotlanova, M., Rataj, T., Damborsky, J., Trtilek, M., & Prokop, Z. (2016). Fluorescence-based biosensor for monitoring of environmental pollutants: From concept to field application. Biosensors and Bioelectronics, 84, 97-105.
Burlage, R. S., & Tillmann, J. (2017). Biosensors of bacterial cells. Journal of microbiological methods, 138, 2-11.
Chaturvedi, A., Bhattacharjee, S., Singh, A. K., & Kumar, V. (2018). A new approach for indexing groundwater heavy metal pollution. Ecological Indicators, 87, 323-331.
Cui, Z., Luan, X., Jiang, H., Li, Q., Xu, G., Sun, C, & Huang, W. E. (2018). Application of a bacterial whole cell biosensor for the rapid detection of cytotoxicity in heavy metal contaminated seawater. Chemosphere, 200, 322-329.
Dolatabadi, J. E. N., Mashinchian, O., Ayoubi, B., Jamali, A. A., Mobed, A., Losic, D, & de la Guardia, M. (2011). Optical and electrochemical DNA nanobiosensors. TrAC Trends in Analytical Chemistry, 30, 459-472.
Evans, G. W., Brauchle, G., Haq, A., Stecker, R., Wong, K., & Shapiro, E. (2007). Young children's environmental attitudes and behaviors. Environment and behavior, 39(5), 635-658.
Farzin, L., Shamsipur, M., & Sheibani, S. (2017). A review: Aptamer-based analytical strategies using the nanomaterials for environmental and human monitoring of toxic heavy metals. Talanta, 174, 619-627.
Fooladsaz, K., Negahdary, M., Rahimi, G., Habibi-Tamijani, A., Parsania, S., Akbari-dastjerdi, H, & Asadi, A. (2012). Dopamine determination with a biosensor based on catalase and modified carbon paste electrode with zinc oxide nanoparticles. Int. J. Electrochem. Sci, 7, 9892-9908.
García-Aljaro, C., Bangar, M. A., Baldrich, E., Muñoz, F. J., & Mulchandani, A. (2010). Conducting polymer nanowire-based chemiresistive biosensor for the detection of bacterial spores. Biosensors and Bioelectronics, 25, 2309-2312.
Hassan, S. H., Van Ginkel, S. W., Hussein, M. A., Abskharon, R., & Oh, S. E. (2016). Toxicity assessment using different bioassays and microbial biosensors. Environment international, 92, 106-118.
Herranz, S., Marciello, M., Marco, M. P., Garcia-Fierro, J. L., Guisan, J. M., & Moreno-Bondi, M. C. (2018). Multiplex environmental pollutant analysis using an array biosensor coated with chimeric hapten-dextran-lipase constructs. Sensors and Actuators B: Chemical, 257, 256-262.
Jacob, J. M., Karthik, C., Saratale, R. G., Kumar, S. S., Prabakar, D., Kadirvelu, K., & Pugazhendhi, A. (2018). Biological approaches to tackle heavy metal pollution: A survey of literature. Journal of environmental management, 217, 56-70.
Jankiewicz, B., Adamczyk, D. 2010. Assessing heavy metal content in soils surrounding a power plant. Polish J. of Environ. Stud.849-853.
Jarque, S., Bittner, M., Blaha, L., & Hilscherova, K. (2016). Yeast biosensors for detection of environmental pollutants: current state and limitations. Trends in biotechnology, 34(5), 408-419.
Justino, C. I., Gomes, A. R., Freitas, A. C., Duarte, A. C., & Rocha-Santos, T. A. (2017). Graphene based sensors and biosensors. TrAC Trends in Analytical Chemistry, 91, 53-66.
Khansili, N., Rattu, G., & Krishna, P. M. (2018). Label-free optical biosensors for food and biological sensor applications. Sensors and Actuators B: Chemical, 265, 35-49.
Kurbanoglu, S., & Ozkan, S. A. (2017). Electrochemical Carbon Based Nanosensors: A Promising Tool in Pharmaceutical and Biomedical Analysis. Journal of Pharmaceutical and Biomedical Analysis, 174, 439-457.
Lawal, A. T. (2018). Progress in utilisation of graphene for electrochemical biosensors. Biosensors and Bioelectronics, 106, 149-178.
Lei, Y., Chen, W., & Mulchandani, A. (2006). Microbial biosensors. Analytica chimica acta, 568, 200-210.
Lima, H. R. S., da Silva, J. S., de Oliveira Farias, E. A., Teixeira, P. R. S., & Eiras, C. (2018). Electrochemical sensors and biosensors for the analysis of antineoplastic drugs. Biosensors and Bioelectronics 108, 27-37.
Lu, X., Xu, Z., Yan, X., Li, S., Ren, W., & Cheng, Z. (2011). Piezoelectric biosensor platform based on ZnO micro membrane. Current Applied Physics, 11(3), S285-S287.
Lv, M., Liu, Y., Geng, J., Kou, X., Xin, Z., & Yang, D. (2018). Engineering nanomaterials-based biosensors for food safety detection. Biosensors and Bioelectronics, 106, 122-128.
Martin, J. A. R., Gutiérrez, C., Torrijos, M., & Nanos, N. (2018). Wood and bark of Pinus halepensis as archives of heavy metal pollution in the Mediterranean Region. Environmental Pollution, 239, 438-447.
Mehrotra, P. (2016). Biosensors and their applications–A review. Journal of oral biology and craniofacial research, 6, 153-159.
Mehrzad-Samarin, M., Faridbod, F., Dezfuli, A. S., & Ganjali, M. R. (2017). A novel metronidazole fluorescent nanosensor based on graphene quantum dots embedded silica molecularly imprinted polymer. Biosensors and Bioelectronics, 92, 618-623.
Men, C., Liu, R., Xu, F., Wang, Q., Guo, L., & Shen, Z. Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China. Science of the total environment 612 (2018): 138-147.
Mohseni, M., Abbaszadeh, J., Maghool, S. S., & Chaichi, M. J. (2018). Heavy metals detection using biosensor cells of a novel marine luminescent bacterium Vibrio sp. MM1 isolated from the Caspian Sea. Ecotoxicology and environmental safety, 148, 555-560.
Mohsin, M., & Ahmad, A. (2014). Genetically-encoded nanosensor for quantitative monitoring of methionine in bacterial and yeast cells. Biosensors and Bioelectronics, 59, 358-364.
Mokhtarzadeh, A., Eivazzadeh-Keihan, R., Pashazadeh, P., Hejazi, M., Gharaatifar, N., Hasanzadeh, M. & de la Guardia, M. (2017). Nanomaterial-based biosensors for detection of pathogenic virus. TrAC Trends in Analytical Chemistry, 97, 445-457.
Otero, D., Alho, A. M., Nijsse, R., Roelfsema, J., Overgaauw, P., & de Carvalho, L. M. (2018). Environmental contamination with Toxocara spp. eggs in public parks and playground sandpits of Greater Lisbon, Portugal. Journal of infection and public health, 11(1), 94-98.
Qi, H., Yue, S., Bi, S., Ding, C., & Song, W. (2018). Isothermal exponential amplification techniques: from basic principles to applications in electrochemical biosensors. Biosensors and Bioelectronics, 110, 207-217.
Rasheed, T., Bilal, M., Nabeel, F., Iqbal, H. M., Li, C., & Zhou, Y. (2018). Fluorescent sensor based models for the detection of environmentally-related toxic heavy metals. Science of the Total Environment, 615, 476-485.
Rowland, C. E., Brown III, C. W., Delehanty, J. B., & Medintz, I. L. (2016). Nanomaterial-based sensors for the detection of biological threat agents. Materials Today, 19(8), 464-477.
Schultz, P. (2002). Environmental attitudes and behaviors across cultures. Online readings in psychology and culture, 8(1), 4.
Shamsazar, A., Shamsazar, F., Asadi, A., & Rezaei-Zarchi, S. (2016). A glucose biosensor based on glucose oxidase enzyme and ZnO nanoparticles modified carbon paste electrode. Int. J. Electrochem. Sci, 11, 9891-9901.
Shamsipur, M., Nasirian, V., Mansouri, K., Barati, A., Veisi-Raygani, A., & Kashanian, S. (2017). A highly sensitive quantum dots-DNA nanobiosensor based on fluorescence resonance energy transfer for rapid detection of nanomolar amounts of human papillomavirus 18. Journal of pharmaceutical and biomedical analysis, 136, 140-147.
Skládal, P. (2016). Piezoelectric biosensors. TrAC Trends in Analytical Chemistry, 79, 127-133.
Sun, Y., Fang, L., Wan, Y., & Gu, Z. (2018). Pathogenic detection and phenotype using magnetic nanoparticle-urease nanosensor. Sensors and Actuators B: Chemical, 259, 428-432.
Syed, M. A. (2014). Advances in nanodiagnostic techniques for microbial agents. Biosensors and Bioelectronics, 51, 391-400.
Takemura, K., Adegoke, O., Takahashi, N., Kato, T., Li, T. C., Kitamoto, N, & Park, E. Y. (2017). Versatility of a localized surface plasmon resonance-based gold nanoparticle-alloyed quantum dot nanobiosensor for immunofluorescence detection of viruses. Biosensors and Bioelectronics, 89, 998-1005.
Tan, E., Yin, P., Lang, X., Zhang, H., & Guo, L. (2012). A novel surface-enhanced Raman scattering nanosensor for detecting multiple heavy metal ions based on 2-mercaptoisonicotinic acid functionalized gold nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 97, 1007-1012.
Templier, V., Roux, A., Roupioz, Y., & Livache, T. (2016). Ligands for label-free detection of whole bacteria on biosensors: A review. TrAC Trends in Analytical Chemistry, 79, 71-79.
Tian, X., Zhao, Y., Li, Y., Yang, C., & Zhou, Z. (2017). Sensitive and selective ratiometric nanosensors for visual detection of Cu2+ based on ions promoted oxidation reaction. Sensors and Actuators B: Chemical, 247, 139-145.
Ullah, N., Mansha, M., Khan, I., & Qurashi, A. (2018). Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: Recent advances and challenges. TrAC Trends in Analytical Chemistry, 100, 155-166.
Wu, W., Wu, P., Yang, F., Sun, D. L., Zhang, D. X., & Zhou, Y. K. (2018). Assessment of heavy metal pollution and human health risks in urban soils around an electronics manufacturing facility. Science of the Total Environment, 630, 53-61.
Xu, M., Wang, R., & Li, Y. (2017). Electrochemical biosensors for rapid detection of Escherichia coli O157: H7. Talanta, 162, 511-522.
Yakovleva, M., Buzas, O., Matsumura, H., Samejima, M., Igarashi, K., Larsson, P. O, & Danielsson, B. (2012). A novel combined thermometric and amperometric biosensor for lactose determination based on immobilised cellobiose dehydrogenase. Biosensors and Bioelectronics, 31(1), 251-256.
Yoo, M. S., Shin, M., Kim, Y., Jang, M., Choi, Y. E., Park, S. J, & Park, C. (2017). Development of electrochemical biosensor for detection of pathogenic microorganism in Asian dust events. Chemosphere, 175, 269-274
Yu, D., Bai, L., Zhai, J., Wang, Y., & Dong, S. (2017). Toxicity detection in water containing heavy metal ions with a self-powered microbial fuel cell-based biosensor. Talanta, 168, 210-216.
Yu, F., Li, Y., Li, M., Tang, L., & He, J. J. (2017). DNAzyme-integrated plasmonic nanosensor for bacterial sample-to-answer detection. Biosensors and Bioelectronics, 89, 880-885.
Zhang, L., Peng, D., Liang, R. P., & Qiu, J. D. (2018). Graphene-Based Optical Nanosensors for Detection of Heavy Metal Ions. TrAC Trends in Analytical Chemistry, 102, 280-289.
Zhang, Z., Hao, Y., & Lu, Z. N. (2018). Does environmental pollution affect labor supply? An empirical analysis based on 112 cities in China. Journal of Cleaner Production, 190, 378-388.
Zhao, X. E., Lei, C., Gao, Y., Gao, H., Zhu, S., Yang, X, & Wang, H. (2017). A ratiometric fluorescent nanosensor for the detection of silver ions using graphene quantum dots. Sensors and Actuators B: Chemical, 253, 239-246.
Zhou, S., Zhao, Y., Mecklenburg, M., Yang, D., & Xie, B. (2013). A novel thermometric biosensor for fast surveillance of β-lactamase activity in milk. Biosensors and Bioelectronics, 49, 99-104.
Zhou, Y., Tang, L., Zeng, G., Zhang, C., Zhang, Y., & Xie, X. (2016). Current progress in biosensors for heavy metal ions based on DNAzymes/DNA molecules functionalized nanostructures: A review. Sensors and Actuators B: Chemical, 223, 280-294.