Fixed Point Theorems in Orthogonal Intuitionistic Fuzzy b-metric Spaces with an Application to Fredholm Integral Equation
الموضوعات : Transactions on Fuzzy Sets and SystemsFahim Uddin 1 , Muhammad Saeed 2 , Khaleel Ahmad 3 , Umar Ishtiaq 4 , Salvatore Sessa 5
1 - Abdus Salam School of Mathematical Sciences, Government College University, Lahore, Pakistan.
2 - Department of Mathematics, University of Management and Technology, Lahore, Pakistan.
3 - Department of Mathematics, University of Management and Technology, Lahore, Pakistan.
4 - Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan.
5 - Department of Mathematics, University of Naples Federico II, Naples, Italy.
الکلمات المفتاحية: Orthogonal set, Intuitionistic fuzzy metric space, Unique solution, Integral equation.,
ملخص المقالة :
In this manuscript, the concept of an orthogonal intuitionistic fuzzy b-metric space is initiated as a generalization of an intuitionistic fuzzy b-metric space. We presented some fixed point results in this setting. For the validity of the obtained results, some non-trivial examples are given. In the last part, we established an application on the existence of a unique solution of a Fredholm-type integral equation.
[1] Bakhtin IA. The contraction mapping principle in quasimetric spaces. Functional analysis. 1989; 30: 26-37. DOI: https://doi.org/10.4236/oalib.1104657
[2] Czerwil S. Contraction mappings in b-metric spaces. Acta Mathematica et Informatica Universitatis Ostraviensis. 1993; 1(1): 5-11. DOI: http://dml.cz/dmlcz/120469
[3] Eshaghi Gordji M, Ramezani M, De La Sen M, Cho YJ. On orthogonal sets and Banachs fixed point theorem. Fixed Point Theory. 2017; 18(2): 569-578. DOI: https://doi.org/10.24193/fpt-ro.2017.2.45
[4] Uddin F, Park C, Javed K, Arshad M, Lee JR. Orthogonal m-metric spaces and an application to solve integral equations. Advance in Difference Equations. 2021; 2021: 1-15. DOI: https://doi.org/10.1186/s13662-021-03323-x
[5] Eshaghi Gordji M, Habibia H. Fixed point theory in generalized orthogonal metric space. Journal of Linear and Topological Algebra. 2017; 6(03): 251-260. DOI: https://dorl.net/dor/20.1001.1.22520201.2017.06.03.7.7
[6] Senapati T, Dey LK, Damjanovic B, Chanda A. New fixed point results in orthogonal metric Space with an application. Kragujevac Journal of Mathematics. 2018; 42(4): 505-516. DOI: https://doi.org/10.5937/KgJMath1804505S
[7] Zadeh LA. Fuzzy sets. Information and Control. 1965; 8(3): 338-353. DOI: https://doi.org/10.1016/S0019-9958(65)90241-X
[8] Schweizer B, Sklar A. Statistical metric spaces. Pacific Journal of Mathematics. 1960; 10(1): 313-334. DOI: http://dx.doi.org/10.2140/pjm.1960.10.313
[9] Kramosil I, Michlek j. Fuzzy metric and statistical metric spaces. Kybernetika. 1975; 11(5): 336-344. DOI: http://dml.cz/dmlcz/125556
[10] George A, Veeramani P. On some results in fuzzy metric spaces. Fuzzy Sets and Systems. 1994; 64(3): 395-399. DOI: https://doi.org/10.1016/0165-0114(94)90162-7
[11] George A, Veeramani P. On some results of analysis for fuzzy metric spaces. Fuzzy Sets and Systems. 1997; 90(3): 365-368. DOI: https://doi.org/10.1016/S0165-0114(96)00207-2
[12] Deng Z. Fuzzy pseudo-metric spaces. Journal of Mathematical Analysis and Applications. 1982; 86(1): 74-95. DOI: https://doi.org/10.1016/0022-247X(82)90255-4
[13] Shukla S, Abbas M. Fixed point results in fuzzy metric-like spaces. Iranian Journal of Fuzzy Systems. 2014; 11(5): 81-92. DOI: https://doi.org/10.22111/ijfs.2014.1724
[14] Hezarjaribi M. Fixed point result in orthogonal fuzzy metric space. Jordan Journal of Mathematics and Statistics. 2018; 11(4): 295-308.
[15] Ndban S. Fuzzy b-metric spaces. International Journal of Computers Communications & Control. 2016; 11(2): 273-281. DOI: https://doi.org/10.15837/IJCCC. 2016.2.2443
[16] Javed K, Uddin F, Aydi H, Arshad M, Ishtiaq U, Alsamir H. On fuzzy b-metric-like spaces. Journal of Function Spaces. 2021; 2021: 1-9. DOI: https://doi.org/10.1155/2021/6615976
[17] Sedghi S, Shobe N. Common fixed point theorem in b-fuzzy metric space. Nonlinear Functional Analysis and Applications. 2012; 17: 349-359. DOI: https://doi.org/10.1155/2021/6615976
[18] Doenovic T, Javaheri A, Sedghi S, Shobe N. Coupled fixed point theorem in b-fuzzy metric spaces. Novi Sad J. Math. 2017; 47(1): 77-88. DOI: https://doi.org/10.1515/fascmath-2018-0015
[19] Rakic D, Mukheimer A, Doenovic T, Mitrovic ZD, Radenovic S. On some new fixed point results in fuzzy b-metrics paces. Journal of Inequalities and Applications. 2020; 2020:1-14. DOI: https://doi.org/10.1186/s13660-020-02371-3
[20] Mehmood F, Ali R, Ionescu C, Kamran T. Extended fuzzy b-metric spaces. Journal of Mathematical Analysis. 2017; 8(6): 124-131.
[21] Park JH. Intuitionistic fuzzy metric spaces. Chaos, Solitons & Fractals. 2004; 22(5): 1039-1046. DOI: https://doi.org/10.1016/j.chaos.2004.02.051
[22] Rafi M, Noorani MSM. Fixed point theorem on intuitionistic fuzzy metric space. Iranian Journal of Fuzzy Systems. 2006; 3(1): 23-29. DOI: https://doi.org/10.22111/IJFS.2006.428
[23] Sintunavarat W, Kumam P. Fixed theorems for a generalized intuitionistic fuzzy contraction in intuitionistic fuzzy metric spaces. Thai Journal of Mathematics. 2012; 10(1): 123-135.
[24] Alaca C, Turkoglu D, Yildiz C. Fixed points in intuitionistic fuzzy metric spaces. Chaos, Solitons & Fractals. 2006; 29(5): 1073-1078. DOI: https://doi.org/10.1016/j.chaos.2005.08.066
[25] Mohamad A. Fixed-point theorems in intuitionistic fuzzy metric spaces. Chaos, Solitons & Fractals. 2007; 34(5): 1689-1695. DOI: https://doi.org/10.1016/j.chaos.2006.05.024
[26] Konwar N. Extension of fixed results in intuitionistic fuzzy b-metric spaces. Journal of Intelligent & Fuzzy Systems. 2020; 39(5): 7831-7841. DOI: https://doi.org/10.3233/JIFS-201233
[27] Baleanu D, Rezapour S, Mohammadi H. Some existence results on nonlinear fractional differential equations. Philosophical Transaction of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2013; 371(1990): 1-7. DOI: https://doi.org/10.1098/rsta.2012.0144
[28] Sudsutad W, Tariboon J. Boundary value problems for fractional differential equations with three-point fractional integral boundary conditions. Advances in Difference Equations. 2012; 2012(93): 1-10. DOI: https://doi.org/10.1186/1687-1847-2012-93