شناسایی صفات مؤثر بر عملکرد دانه در ژنوتیپهای گندم نان تحت شرایط تنش و بدون تنش گرمایی
الموضوعات :
بوم شناسی گیاهان زراعی
حسین علی فلاحی
1
,
عاطفه کاویانی چراتی
2
,
عباسعلی اندرخور
3
1 - بخش تحقیقات زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی مازندران، سازمان تحقیقات آموزش و ترویج کشاورزی، ساری، ایران
2 - گروه بیوتکنولوژی، دانشگاه گنبد کاووس، گنبد کاووس، ایران
3 - بخش تحقیقات زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی مازندران، سازمان تحقیقات آموزش و ترویج کشاورزی، ساری، ایران
تاريخ الإرسال : 10 الأربعاء , ذو القعدة, 1438
تاريخ التأكيد : 07 الأربعاء , جمادى الأولى, 1439
تاريخ الإصدار : 04 الأحد , جمادى الأولى, 1439
الکلمات المفتاحية:
تجزیه علیت,
رگرسیون گام به گام,
همبستگی,
تجزیه خوشهای,
گندم معمولی,
ملخص المقالة :
به منظور تعیین صفات مؤثر بر عملکرد دانه، 10 ژنوتیپ گندم نان شامل ارقام مروارید و کوهدشت و لاین های N-87-4، N-87-9، N-86-6،N-86-8، N-80-19، N-86-5،N-85-5 و لاین 17 در دو شرایط و آزمایش جداگانه شامل شرایط محیطی بدون تنش گرمایی در تاریخ 15 آذر ماه و شرایط تنش گرمایی 10 بهمن ماه در ایستگاه تحقیقات کشاورزی گنبد کاووس طی سال زراعی 91-1390 کاشته شدند. در این پژوهش ژنوتیپ ها در قالب طرح بلوک های کامل تصادفی با سه تکرار و با تجزیه مرکب مورد مقایسه قرار گرفتند. اثر متقابل تنش و ژنوتیپ تنها بر عملکرد دانه، طول سنبله، تعداد سنبله بارور ولی اثرات ساده تنش و ژنوتیپ در همه صفات مورد ارزیابی معنی دار بود. در هر دو شرایط طبیعی و تنش گرمایی عملکرد دانه با صفت تعداد سنبله بارور همبستگی مثبت و معنی داری داشت. رگرسیون گام به گام نشان داد که تعداد سنبله بارور در شرایط بدون تنش 8/99% و در شرایط تنش 1/97% از تغییرات عملکرد دانه را تبیین نمود. تجزیه علیت نشان داد که تعداد سنبله بارور بیشترین اثر مستقیم را بر عملکرد دانه در هر دو شرایط داشت. تجزیه خوشه ای به روش وارد در شرایط طبیعی ژنوتیپ های مورد مطالعه را در دو گروه و در شرایط تنش در سه گروه طبقه بندی کرد. بنابراین، گزینش ژنوتیپ ها براساس صفت تعداد سنبله بارور میتواند به طور غیر مستقیم در هر دو شرایط تنش گرمایی و طبیعی به گزینش ژنوتیپهایی با عملکرد بالا منتج شود.
المصادر:
Abedini S, Mohammadi-Nejad Gh, Nakhoda B (2016) Evaluation of agronomic traits and yield potential diversity inbreed wheat inbred lines (Triticum aestivum L.) derived from Roshan × Falat Cultivar. Journal of Crop Breeding 8(20): 1-10. [in Persian with English abstract]
Afiuni D, Mahloji M (2006) Correlation analysis of some agronomic traits in wheat (Triticum aestivum L.) genotypes under salinity stress. Seed and Plant Improvement Journal 22(2): 186-197. [in Persian with English abstract]
Al-Khatib K, Paulsen GM (1990) Photosynthesis and productivity during high-temperature stress of wheat genotypes from major world regions. Crop Science 30: 1127–1132.
Aly RM, El-Bana AYA (1994) Grain yield analysis for nine wheat cultivars grown in newly cultivated sandy soil under different fertilization levels. Zagazing Journal of Agriculture Research 21: 67-77.
Arshad U, Zahravi M, Ebadvarze GhR (2012) Identification of sources of heat stress in wheat relatives. Journal of Agricultural Research 4(2): 98-107. [in Persian]
Ayeneh A, van Ginkel M, Reynolds MP, Ammar K (2002) Comparison of leaf, spike, peduncle and canopy temperature depression in wheat under heat stress. Field Crops Research 79: 173-184.
Fagam AS, Bununu AM, Buba UM (2007) Path Coefficient Analysis of the Components of Grain Yield in Wheat (Triticum aestivum L.). International Journal of Natural and Applied Sciences 2: 310-316.
Gohari AM, Sedaghat N, Javan Nikkhah M, Saberi-Riseh R (2007) Mycoflora of Wheat Grains in the Main Production Area in Kerman Province, Iran. International Journal of Agriculture and Biology 9(4): 635-637.
Keim DL, Kronstand WE (1981) Drought responses of winter wheat cultivars grown under field stress conditions. Crop Science 21: 11-14.
Modarresi M, Mohammadi V, Zali A, Mardi M (2010) Response of wheat yield and yield related traits to high temperature. Cereal Research Communications 38: 23–31.
Nahar K, Ahamed KU, Fujita M (2010) Phenological variation and its relation with yield in several wheat (Triticum aestivum L.) cultivars under normal and late sowing mediated heat stress condition. Notulae Scientia Biologicae 2(3): 51-56.
Nanda Mandal S, Singh Dhanda S, Munjal R, Pramanik Ch (2016) Multivariate analysis for trait alliance of bread wheat yield under terminal heat stress conditions. International Quarterly Journal of Environmental Sciences 10(2): 121-127.
Norkhalaj K, Khodarahmi M, Amini A, Esmailzadeh M, Sadegh Ghol Moghaddam R (2010) Study on Correlation and Causation relations of Morphological traits in synthetic wheat liens. Journal of Agronomy and Plant Breeding 6(3): 7-17. [in Persian]
Oraki A, Siahpoosh MR, Rahnama A, Lakzadeh I (2016) The effects of terminal heat stress on yield, yield components and some morpho-phenological traits of barley genotypes (Hordeum vulgare L.) in Ahvaz weather conditions. Iranian Journal of Filed Crop Science 47(1): 29-40. [in Persian with English abstract]
Porjahromi MA (2007) The response two wheat cultivars to adjusting the size of the source: Interaction of variety and density in stress and normal conditions. Master Thesis. University of Tehran, Faculty of Agriculture: Tehran, Iran. [in Persian with English abstract]
Radmehr M (1997) Effect of heat stress on physiology of growth and development of wheat. Ferdowsi University Publication: Mashhad. [in Persian]
Richards RA (1996) Defining selection criteria improve yield under drought. Plant Growth Regulation 20: 157-166.
Royo C, Nachit MM, Fonze ND, Araus JL, Pfeiffer WH, Slafer GA (2005) Durum wheat breeding: current approaches and future strategies. Food product Publication: Binghamton, USA.
Sial MA, Afzal MA, Khanzada Sh, Naqvi MH, Dahot MU, Nizamani NA (2005) Yield and quality parameters of wheat genotypes as affected by sowing dates and high temperature stress. Pakistan Journal of Botany 37(3): 575-584.
Suleiman AA, Nganya JF, Ashraf MA (2014) Correlation and path analysis of yield and yield components in some cultivars of wheat (Triticum Aestivum L.) in Khartoum state, sudan 3(6): 221-228.
Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: An overview. Environmental and Experimental Botany 61(3): 199-223.
_||_
Abedini S, Mohammadi-Nejad Gh, Nakhoda B (2016) Evaluation of agronomic traits and yield potential diversity inbreed wheat inbred lines (Triticum aestivum L.) derived from Roshan × Falat Cultivar. Journal of Crop Breeding 8(20): 1-10. [in Persian with English abstract]
Afiuni D, Mahloji M (2006) Correlation analysis of some agronomic traits in wheat (Triticum aestivum L.) genotypes under salinity stress. Seed and Plant Improvement Journal 22(2): 186-197. [in Persian with English abstract]
Al-Khatib K, Paulsen GM (1990) Photosynthesis and productivity during high-temperature stress of wheat genotypes from major world regions. Crop Science 30: 1127–1132.
Aly RM, El-Bana AYA (1994) Grain yield analysis for nine wheat cultivars grown in newly cultivated sandy soil under different fertilization levels. Zagazing Journal of Agriculture Research 21: 67-77.
Arshad U, Zahravi M, Ebadvarze GhR (2012) Identification of sources of heat stress in wheat relatives. Journal of Agricultural Research 4(2): 98-107. [in Persian]
Ayeneh A, van Ginkel M, Reynolds MP, Ammar K (2002) Comparison of leaf, spike, peduncle and canopy temperature depression in wheat under heat stress. Field Crops Research 79: 173-184.
Fagam AS, Bununu AM, Buba UM (2007) Path Coefficient Analysis of the Components of Grain Yield in Wheat (Triticum aestivum L.). International Journal of Natural and Applied Sciences 2: 310-316.
Gohari AM, Sedaghat N, Javan Nikkhah M, Saberi-Riseh R (2007) Mycoflora of Wheat Grains in the Main Production Area in Kerman Province, Iran. International Journal of Agriculture and Biology 9(4): 635-637.
Keim DL, Kronstand WE (1981) Drought responses of winter wheat cultivars grown under field stress conditions. Crop Science 21: 11-14.
Modarresi M, Mohammadi V, Zali A, Mardi M (2010) Response of wheat yield and yield related traits to high temperature. Cereal Research Communications 38: 23–31.
Nahar K, Ahamed KU, Fujita M (2010) Phenological variation and its relation with yield in several wheat (Triticum aestivum L.) cultivars under normal and late sowing mediated heat stress condition. Notulae Scientia Biologicae 2(3): 51-56.
Nanda Mandal S, Singh Dhanda S, Munjal R, Pramanik Ch (2016) Multivariate analysis for trait alliance of bread wheat yield under terminal heat stress conditions. International Quarterly Journal of Environmental Sciences 10(2): 121-127.
Norkhalaj K, Khodarahmi M, Amini A, Esmailzadeh M, Sadegh Ghol Moghaddam R (2010) Study on Correlation and Causation relations of Morphological traits in synthetic wheat liens. Journal of Agronomy and Plant Breeding 6(3): 7-17. [in Persian]
Oraki A, Siahpoosh MR, Rahnama A, Lakzadeh I (2016) The effects of terminal heat stress on yield, yield components and some morpho-phenological traits of barley genotypes (Hordeum vulgare L.) in Ahvaz weather conditions. Iranian Journal of Filed Crop Science 47(1): 29-40. [in Persian with English abstract]
Porjahromi MA (2007) The response two wheat cultivars to adjusting the size of the source: Interaction of variety and density in stress and normal conditions. Master Thesis. University of Tehran, Faculty of Agriculture: Tehran, Iran. [in Persian with English abstract]
Radmehr M (1997) Effect of heat stress on physiology of growth and development of wheat. Ferdowsi University Publication: Mashhad. [in Persian]
Richards RA (1996) Defining selection criteria improve yield under drought. Plant Growth Regulation 20: 157-166.
Royo C, Nachit MM, Fonze ND, Araus JL, Pfeiffer WH, Slafer GA (2005) Durum wheat breeding: current approaches and future strategies. Food product Publication: Binghamton, USA.
Sial MA, Afzal MA, Khanzada Sh, Naqvi MH, Dahot MU, Nizamani NA (2005) Yield and quality parameters of wheat genotypes as affected by sowing dates and high temperature stress. Pakistan Journal of Botany 37(3): 575-584.
Suleiman AA, Nganya JF, Ashraf MA (2014) Correlation and path analysis of yield and yield components in some cultivars of wheat (Triticum Aestivum L.) in Khartoum state, sudan 3(6): 221-228.
Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: An overview. Environmental and Experimental Botany 61(3): 199-223.