Physiological Studies on the Toxicity of Nano and Bulk Nickel Oxide in Germinating Seedlings of Fennel (Foeniculum vulgare Mill.)
الموضوعات :Hilda Besharat 1 , Ramazan Ali Khavari- Nejad 2 , Homa Mahmoodzadeh 3 , Khadijeh Nejad- Shahrokh Abadi 4
1 - Department of Biology, Mashhad branch,Department of Biology, Mashhad branch, Islamic Azad University, Mashhad, Iran, Mashhad, Iran
2 - Department of Biology, Science and Research branch, Islamic Azad University, Tehran, Iran
3 - Department of Biology, Mashhad branch, Islamic Azad University, Mashhad, Iran
4 - Department of Biology, Mashhad branch, Islamic Azad University, Mashhad, Iran
الکلمات المفتاحية: Foeniculum vulgare, NiO nanoparticle, bulk NiO, germination factors, seedling growth,
ملخص المقالة :
The effect of nanoparticles on living organisms is not well understood yet. The physicochemical properties of nanoparticles enhance the use of nanotechnology in various fields. In this study, the effect of different concentrations of nano and bulk nickel oxide (0, 10, 20, 50, 100, 200, 400, 600, 800, and 1000 ppm) on fennel seed germination and growth was tested in a randomized complete design with four replications. After 14 days of seed treatment, germination factors (germination percent, relative germination percent, mean germination time, germination rate, germination index, and weight germination index) were measured. In general, low nano concentrations and medium bulk concentrations on fennel seed growth showed stimulating effects, while high nano and bulk concentrations showed toxic effects. Therefore, exposure of fennel seeds to low concentrations of NiO nanoparticles and medium concentrations of bulk NiO stimulated seed germination. These concentrations can be used as a new approach to overcome seed germination problems of some plant species, especially medicinal plants such as fennel.
Abdel-Salam, E. M., A. A. Qahtan, M. Faisal, Q. Saquib, A. A. Alatar and A. A. Al-Khedhairy. 2018. Phytotoxic assessment of nickel oxide (NiO) nanoparticles in radish. Phytotoxicity of nanoparticles, 269-284.
Ahmad, M. S. A., M. Hussain, M. Ashraf, R. Ahmad and M. Y. Ashraf. 2009. Effect of nickel on seed germinability of some elite sunflower (Helianthus annuus L.) cultivars. Pak J Bot, 41, (4) 1871-1882.
Alfei, S., B. Marengo and G. Zuccari. 2020. Nanotechnology application in food packaging: A plethora of opportunities versus pending risks assessment and public concerns. Food Research International, 137, 109664.
Baran, U., S. Tanık, M. C. Vardar, G. Ülger and A. Aksoy. 2024. Nickel toxicity to safflower seed germination and seedling morpho-anatomy.
Barrena, R., E. Casals, J. Colón, X. Font, A. Sánchez and V. Puntes. 2009. Evaluation of the ecotoxicity of model nanoparticles. Chemosphere, 75, (7) 850-857.
Begum, W., S. Rai, S. Banerjee, S. Bhattacharjee, M. H. Mondal, A. Bhattarai and B. Saha. 2022. A comprehensive review on the sources, essentiality and toxicological profile of nickel. RSC advances, 12, (15) 9139-9153.
Bhardwaj, A. K., G. Arya, R. Kumar, L. Hamed, H. Pirasteh-Anosheh, P. Jasrotia, P. L. Kashyap and G. P. Singh. 2022. Switching to nanonutrients for sustaining agroecosystems and environment: The challenges and benefits in moving up from ionic to particle feeding. Journal of Nanobiotechnology, 20, (1) 19.
Bu, H., X.-L. Chen, Y. Wang, X. Xu, K. Liu and G. Du. 2007. Germination time, other plant traits and phylogeny in an alpine meadow on the eastern Qinghai-Tibet Plateau. Community Ecology, 8, 221-227.
Bu, H., G. Du, X. Chen, Y. Wang, X. Xu and K. Liu. 2009. The evolutionary significance of seed germinability in an alpine meadow on the eastern Qinghai-Tibet Plateau. Arctic, Antarctic, and Alpine Research, 41, (1) 97-102.
Bu, H., G. Du, X. Chen, X. Xu, K. Liu and S. Wen. 2008. Community-wide germination strategies in an alpine meadow on the eastern Qinghai-Tibet plateau: phylogenetic and life-history correlates. Plant Ecology, 195, 87-98.
Das, B., R. Yonzone, S. Saha, D. K. Murmu and S. Kundu. 2022. Comprehensive assessment of ZnO, P and TiO2 nanoparticles sustaining environment in response to seed germination, antioxidants activity, nutritional quality and yield of Spinach Beet (Beta vulgaris var. bengalensis).
Fasake, V., N. Patil, Z. Javed, M. Mishra, G. Tripathi, A. Srivastava and K. Dashora. 2021. Effects of nanobionics in crop production: a review. Nanoscience & Nanotechnology-Asia, 11, (3) 249-261.
Feizi, H., M. Kamali, L. Jafari and P. R. Moghaddam. 2013. Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere, 91, (4) 506-511.
Figueroa, J. and J. Armesto. 2001. Community-wide germination strategies in a temperate rainforest of Southern Chile: ecological and evolutionary correlates. Australian Journal of Botany, 49, (4) 411-425.
Fujita, M. and M. Hasanuzzaman. 2022. Approaches to enhancing antioxidant defense in plants. p. 925: MDPI
Guo, H., Y. Liu, J. Chen, Y. Zhu and Z. Zhang. 2022. The effects of several metal nanoparticles on seed germination and seedling growth: a meta-analysis. Coatings, 12, (2) 183.
Hayyat, M. S., M. Adnan, M. Awais, H. Bilal, B. Khan and H. Rahman. 2020. Effect of heavy metal (Ni) on plants and soil: A review. Int J Appl Res, 6, (7) 313-318.
Joudeh, N. and D. Linke. 2022. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. Journal of Nanobiotechnology, 20, (1) 262.
Kandil, A., A. Sharief and K. R. Ahmed. 2015. Performance of some soybean Glycine max (L.) Merrill. cultivars under salinity stress to germination characters. International Journal of Agronomy and Agricultural Research, 6, (3) 48-56.
Manna, I., S. Sahoo and M. Bandyopadhyay. 2023. Dynamic changes in global methylation and plant cell death mechanism in response to NiO nanoparticles. Planta, 257, (5) 93.
Méabed, E. M., N. M. El-Sayed, A. I. Abou-Sreea and M. H. Roby. 2018. Chemical analysis of aqueous extracts of Origanum majorana and Foeniculum vulgare and their efficacy on Blastocystis spp. cysts. Phytomedicine, 43, 158-163.
Mielcarz, L. and B. Smolińska. 2016. Nickel–the use and influence on living organisms. Biotechnology and Food Science, 80, (1) 43-52.
Miri, A. H., E. S. Shakib, O. Ebrahimi and J. Sharifi-Rad. 2017. Impacts of nickel nanoparticles on grow characteristics, photosynthetic pigment content and antioxidant activity of Coriandrum sativum L. Oriental Journal of Chemistry, 33, (3) 1297-1303.
Mohamad, A. T., J. Kaur, N. a. C. Sidik and S. Rahman. 2018. Nanoparticles: A review on their synthesis, characterization and physicochemical properties for energy technology industry. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 46, (1) 1-10.
Najem, M., E. H. Bouiamrine and J. Ibijbijen. 2024. Ras El Hanout: a theriac of therapeutic plants and spices-Qualitative and quantitative ethnobotanical investigation in the city of Meknes (Morocco). Ethnobotany Research and Applications, 29, 1-32.
Oukarroum, A., L. Barhoumi, M. Samadani and D. Dewez. 2015. Toxic effects of nickel oxide bulk and nanoparticles on the aquatic plant Lemna gibba L. BioMed research international, 2015, (1) 501326.
Pavitra, V., H. Divya, B. Praveen, G. Nagaraju and U. Udayabhanu. 2022. Radish (Raphanus sativus) Leaves Mediated CuO-NiO Nanocomposite for Photocatalytic Activity. Advanced Materials Research, 1173, 47-55.
Pinto, T., A. Aires, F. Cosme, E. Bacelar, M. C. Morais, I. Oliveira, J. Ferreira-Cardoso, R. Anjos, A. Vilela and B. Gonçalves. 2021. Bioactive (poly) phenols, volatile compounds from vegetables, medicinal and aromatic plants. Foods, 10, (1) 106.
Rai, P. K., V. Kumar, S. Lee, N. Raza, K.-H. Kim, Y. S. Ok and D. C. Tsang. 2018. Nanoparticle-plant interaction: Implications in energy, environment, and agriculture. Environment international, 119, 1-19.
Ranganathan, U. and S. P. Groot. 2023. Seed longevity and deterioration. In Seed science and technology: biology, production, quality:91-108: Springer Nature Singapore Singapore. Number of 91-108 pp.
Rath, S., M. Harshavardhan and P. Srivastava. 2024. A Concise Overview of Effect of Nanomaterials in Soil and Associated Microbiota. J Environ Nanotechnol, 13, (2) 183-193.
Rehman, A. U., S. Nazir, R. Irshad, K. Tahir, K. Ur Rehman, R. U. Islam and Z. Wahab. 2021. Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles. Journal of Molecular Liquids, 321, 114455.
Ruttkay-Nedecky, B., O. Krystofova, L. Nejdl and V. Adam. 2017. Nanoparticles based on essential metals and their phytotoxicity. Journal of nanobiotechnology, 15, 1-19.
Siddiqui, M. H., M. H. Al-Whaibi and F. Mohammad. 2015. Nanotechnology and plant sciences. Springer International Publishing Switzerland DOI, 10, 978-973.
Soares, C., S. Branco-Neves, A. De Sousa, R. Pereira and F. Fidalgo. 2016. Ecotoxicological relevance of nano-NiO and acetaminophen to Hordeum vulgare L.: combining standardized procedures and physiological endpoints. Chemosphere, 165, 442-452.
Spormann, S., F. Sousa, F. Oliveira, V. Ferreira, B. Teixeira, C. Pereira, C. Soares and F. Fidalgo. 2022. Ascorbate supplementation: A blessing in disguise for tomato seedlings exposed to nio nanoparticles. Agriculture, 12, (10) 1546.
Tadese, D. A., C. Song, C. Sun, B. Liu, B. Liu, Q. Zhou, P. Xu, X. Ge, M. Liu and X. Xu. 2022. The role of currently used medicinal plants in aquaculture and their action mechanisms: A review. Reviews in Aquaculture, 14, (2) 816-847.
Tang, Y., Z. Shang, X. Li, Y. Ma, H. Wu and R. Long. 2008. Allelopathic effects of Aerbalupulin on several graminaceous grass species on alpine meadow. Chinese Journal of Ecology, 27, 2067-2072.
Thul, S. T. and B. K. Sarangi. 2015. Implications of nanotechnology on plant productivity and its rhizospheric environment. Nanotechnology and plant sciences: nanoparticles and their impact on plants, 37-53.
Tiwari, V., V. Sahithya, N. Wagh and J. Lakkakula. 2024. Green Synthesis of Nanomaterials from Algae Materials to Remediate Environmental Pollution. In Sustainable Nanoremediation:297-326: Apple Academic Press. Number of 297-326 pp.
Torbati, S. 2018. Phytotoxicological effects of bulk-NiO and NiO nanoparticles on lesser and giant duckweeds as model macrophytes: Changes in the plants physiological responses. Iranian Journal of Toxicology, 12, (4) 31-39.
Wu, G. and G. Du. 2007. Germination is related to seed mass in grasses (Poaceae) of the eastern Qinghai‐Tibetan Plateau, China. Nordic Journal of Botany, 25, (5‐6) 361-365.
Wu, T., G. Zou, X. Lan, G. Zhang, Y. Shan, B. Liu, Z. Ding, T. a. R. Nogueira, M. Nawaz and F. Zhao. 2023. The efficiency of nanoparticles on improving seed germination and mitigating ammonium stress of water spinach (Ipomoea aquatica Forssk.) and Hami melon (Cucumis melo L.). Sustainability, 15, (13) 10083.
Xi, L., M. Zhang, L. Zhang, T. T. Lew and Y. M. Lam. 2022. Novel materials for urban farming. Advanced Materials, 34, (25) 2105009.