بهینهسازی زنجیره تامین لبنی در استان کردستان با در نظر گرفتن محصولات ثانویه
الموضوعات : فصلنامه علمی -پژوهشی تحقیقات اقتصاد کشاورزیسیده روزیتا ابراهیمی 1 , فرید خوش الحان 2 , حامد قادرزاده 3
1 - دانشکده مهندسی صنایع، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران و ایران
2 - دپارتمان مهندسی صنایع، دانشکده مهندسی صنایع، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران
3 - عضو هیئت علمی گروه اقتصاد کشاورزی دانشگاه کردستان
الکلمات المفتاحية: بهینهسازی, زنجیره تامین لبنی, محصولات ثانویه, ضایعات مواد غذایی - استان کردستان ایران,
ملخص المقالة :
صنعت لبنی جایگاه ویژهای در صنایع غذایی جهانی دارد. موضوع محصولات ثانویه در کاهش ضایعات، ایجاد ارزش افزودهی بالا و کاهش اثرات زیستمحیطی متناظر به عنوان بخشی از مولفههای زنجیره تامین لبنی قابل طرح است. به دلیل ارزش غذایی و همچنین شامل شدن هزینههای تولیدی این محصولات انجام تمهیداتی به منظور کاهش ضایعات و تامین غذای بیشتر، اقتصادی به نظر میرسد. در بین محصولات ثانویه در فرایند فراوری محصولات لبنی، آب پنیر به عنوان مهمترین و مغذیترین مادهی ثانویه شناخته شده است. مقالهی حاضر تلاش مینماید، با توسعهی مدلهای موجود در زنجیره تامین لبنی و افزودن متغیر تصمیم محصولات ثانویه به آن، گامی در راستای تحقق این اهداف بردارد. با تحلیل و آنالیز مدل جدید با بهرهگیری از دادههای صنعت لبنیات استان کردستان سودآوری این زنجیره پس از دخیل کردن تاثیر محصول ثانویهی آب پنیر، به طور معنیداری افزایش مییابد.
- Adonyi, R., Shopova, E. & Vaklieva-Bancheva, N. (2009). Optimal schedule of a dairy manufactory. Chemical and Biochemical Engineering Quarterly, 23:231–237.
- Ahumada, O., & J. R. Villalobos. (2009). Application of planning models in the agro-food supply chain: A review. European Journal of Operational Research, 196: 1–20.
- Banaszewska, A. & Cruijssen, F. (2013). A comprehensive dairy valorization model. Journal of Dairy Science, 96:761–779.
- Banaszewska, A., Cruijssen, F., Claassen, G. D. H. & van der Vorst, J. G. A. J. (2014). Effect and key factors of byproducts valorization: The case of dairy industry. Journal of Dairy Science, 97 :1893–1908.
- Bello, N.M., Stevenson, J.S. & Tempelman, R.J. (2012). Invited review: Milk production and reproductive performance: Modern interdisciplinary insights into an enduring axiom. . Journal of Dairy Science, 95: 5461 – 5475.
- Benseman, B. R. (1986). Production planning in the New Zealand dairy industry. Journal of the Operational Research Society, 37: 747–754.
- Bourlakis, M., Maglaras, G., Aktas, E., Gallear, D. & Fotopoulos, Ch. (2013). Firm size and sustainable performance in food supply chains: Insights from Greek SMEs. International Journal of Production Economics.
-Burke, J. A. (2006). Two mathematical programming models of cheese manufacture. Journal of Dairy Science, 89:799–809.
- Birge, J. & Louveaux, F. (1997). Introduction to Stochastic Programming. Springer Seriesin Operations Research. Springer-Verlag, New York.
- Craig, K.L., Norback, J.P. & Johnson, M.E. (1989). A Linear Programming Model Integrating Resource Allocation and Product Acceptability for Processed Cheese Products.
- Doganis, P., & H. Sarimveis. (2007). Optimal scheduling in a yogurt production line based on mixed integer linear programming. Journal of Food Engineering, 80: 445–453.
- Doole, G. J., Alvaro, A. J., & Adler, A. A. (2012). A mathematical model of a New Zealand dairy farm: The Integrated Dairy Enterprise Analysis (IDEA) framework. Working Paper 1201. Waikato University Department of Economics, Hamilton, New Zealand.
- Duan, Q. & Liao T.W. (2013). A new age-based replenishment policy for supply chain inventory optimization of highly perishable products. International Journal of Production Economics, 145: 658-671.
- Ergüder, T.H., Tezel, U., Güven, E. & Demirer, G.N. (2001). Anaerobic biotransformation and methane generation potential of cheese whey in batch and UASB reactors. Waste Manage. 21 (7), 643-650.
- Geary, U., N. Lopez-Villalobos, D. J., Garrick, & Shalloo, L. (2010). Development and application of a processing model for the Irish dairy industry. Journal of Dairy Science, 93:5091–5100.
- Guan, Z., & A. B. Philpott. (2011). A multistage stochastic programming model for the New Zealand dairy industry. International Journal of Production Economics, 134:289–299.
- Guan, Z. & Philpott, A.B. (2011). A multistage stochastic programming model for the New Zealand dairy industry. International Journal of Production Economics, 134: 289–299.
- Hovelaque,V., Duvaleix-Tréguer,S. & Cordier, J (2009), Effects of constrained supply and price contracts on agricultural cooperatives. European Journal of Operational Research, 199: 769–780.
- Kerrigan, G. L., & Norback, J. P. (1986). Linear programming in the allocation of milk resources for cheese making. Journal of Dairy Science, 69: 1432–1440.
- Koutinas, A., Papapostolou, H., Dimitrellou, D. & Kopsahelis, N. (2009). Whey valorisation: A complete and novel technology development for dairy industry starter culture production. Bioresource Technology Journal, 100, 3734–3739.
- Johnson, H.A., Parvin, L., Garnett, I., DePeters, E. J., Medrano, J. F. & Fadel. J. G. (2007). Valuation of milk composition and genotype in cheddar cheese production using an optimization model of cheese and whey production. Journal of Dairy Science ,90:616–629.
- Lutke-Entrup, M., Gunther, H.O., Van Beek, P., Grunow, M. & Seiler. T. (2005). Mixed-integer linear programming approaches to shelf-life-integrated planning and scheduling in yoghurt production. International Journal of Production Research,43:5071–5100.
- Mellalieu, P. J. & Hall, K. R. (1983). An interactive planning model for the New Zealand dairy industry. Journal of the Operational Research Society, 34:521– 532.
- Papadatos, A., Berger, A. M., Pratt, J. E. & Barbano, D. M. (2002). A nonlinear programming optimization model to maximize net revenue in cheese manufacture. Journal of Dairy Science, 85:2768–2785.
- Perrot, N., De Vries, H. & Lutton, E. (2015). Some remarks on computational approaches towards sustainable complex agri-food systems. Trends in Food Science & Technology: 1-14.
- Pinior, B., Conraths, Franz J. & Petersen, B. Reprintof (2015) .“Decision support for risks managers in the case of deliberate food contamination: The dairy industry as an example”. Omega, 57: 114–122.
- Roupas, P. (2008). Predictive modeling of dairy manufacturing processes. International Dairy Journal, 18:741–753.
- Sadeghi, J., Mousavi, S.M., Akhavan Niaki, S.T. & Sadeghi, S. (2014). Optimizing a bi-objective inventory model of a three-echelon supply chain using a tuned hybrid bat algorithm. Transportation Research, 70: 274 – 292.
- Sethanan, K. & Pitakaso, R. (2016). Differential evolution algorithms for scheduling raw milk transportation. Computers and Electronics in Agriculture, 121: 245–259.
- Strande´n, I. & Lidauer, M. (2001). Parallel Computing Applied to Breeding Value Estimation in Dairy Cattle. Journal of Dairy Science, 84 : 276-285.
- Vaklieva-Bancheva, N., Espuna, A., Shopova, E., Puigjaner, L. & Ivanov, B. (2007). Multi-objective optimization of dairy supply chain. Computer Aided Chemical Engineering, 24:781–786.
- Validi, S., Bhattacharya, A. & Byrne, P.J. (2014). A case analysis of a sustainable food supply chain distribution system—A multi-objective approach. International Journal of Production Economics, 152: 71–87.
- Vellinga, Th.V., Bannink, A., Smits, M.C.J., Dasselaar, A., Van den Pol-Van & Pinxterhuis, I. (2011). Intensive dairy production systems in an urban landscape, the Dutch situation. Livestock Science, 139: 122–134.
- Wouda, F. H. E., P. van Beek, J. G. A. J. van der Vorst, & H. Tacke. (2002). An application of mixed-integer linear programming models on the redesign of the supply network of Nutricia Dairy & DrinksGroup in Hungary. Spectrum, 24: 449–465.
- Yates, C. M. & Rehman, T. (1998). A Linear Programming Formulation of the Markovian Decision Process Approach to Modeling the Dairy Replacement Problem. Agricultural Systems, 2 : 185-201.
- Yu, M. & Nagurney, A. (2013). Competitive food supply chain networks with application to fresh produce. European Journal of Operational Research, 224: 273–282.
- Zarei, M., Fakhrzad, M. B. & Jamali Paghaleh, M. (2011) . Food supply chain leanness using a developed QFD model. Journal of Food Engineering, 102: 25–33.
_||_