بررسی خوردگی در برج احیا آمین پالایشگاه دوم پارس جنوبی با استفاده از شبیه ساز فرآیندی در واحد شیرین سازی گاز و کاهش نرخ خوردگی به کمک کنترل متغیرهای فرآیندی
الموضوعات : فصلنامه علمی - پژوهشی مواد نوینرضا قربانی 1 , اسماعیل جعفری 2
1 - گروه مهندسی مواد - دانشگاه آزاد اسلامی - شیراز-ایران
2 - استادیار گروه مهندسی مواد، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
الکلمات المفتاحية: شبیه سازی, شیرین سازی گاز, برج احیا, خوردگی CO2,
ملخص المقالة :
پدیده مخرب خوردگی به عنوان یکی از معضلات مهم در واحدهای شیرین سازی پالایشگاههای گاز کشور شناخته شده است که اغلب، در برج احیاء آمین و نواحی تشکیل میعان فازهای بخار غنی از دی اکسیدکربن رخ میدهد. یکی از مهمترین علل فرایندی این معضل، کاهش دمای آمین ورودی به پایینتر از دمای بازه ایمن عملیاتیاست. مطابق با شبیه سازی فرایندی انجام شده با استفاده از نرم افزار پرومکس، در صورت افت دمای آمین ورودی به برج احیاء، انجام عمل دفع گازهای اسیدی، عمدتا در پایین برج و همچنین جوش آورنده مربوطه صورت میگیرد که با توجه به جنس بدنه (فولاد کربنی 516)، بروز مکانیزمهای تخریب ناشی از دی اکسیدکربن محتمل خواهد بود. بررسی کوپنهای نصب شده در واحد شیرین سازی گاز، نشانگر افزایش نرخ خوردگی است که در صورت عدم کنترل شرایط فرآیندی در چرخه آمین، میتواند تا 1.27 میلیمتر در سال افزایش یابد. تصاویر میکروسکوپ استریو و شناسایی ترکیبات محصولات خوردگی به وسیله پراش اشعه ایکس، موارد فوق را تایید میکند. در پایان، متناسب با دیدگاه و استراتژی هر پالایشگاه و همچنین در نظر گرفتن هزینه چرخه زمان عمر، راهکارهای متفاوتی جهت کنترل دمای آمین به برج در محدوده امن عملیاتی بیان شده است. راه کارهای فوق شامل طراحی و افزودن یک مبدل حرارتی جدید و یا تمیز کاری ادواری به منظورحذف رسوبات تشکیل شده در مبدل صفحهای آمین - آمین ارائه شده است.
[1]-A. Tavan, H. Gholami, and S. Shahhosseini, “Some notes on process intensification of amine based gas sweetening process for better temperature distribution in contactor to reduce the amount of amine as a result of corrosion and foaming,” Journal of Loss Prevention in the Process Industries, vol. 41, 2016, pp. 169-177.
[2]- A. Zahid, F. N. Al Rowaili, M. K. Ayodeji et al., “Simulation and parametric analysis of CO2 capture from natural gas using diglycolamine,” International Journal of Greenhouse Gas Control, vol. 57, 2017, pp. 42-51.
[3] -Berat Banat, O. Younas, and I. Didarul, “Energy and exergical dissection of a natural gas sweetening plant using methyldiethanol amine (MDEA) solution,” Journal of Natural Gas Science and Engineering, vol. 16, 2014, pp. 1-7.
[4] -B. Pal, A. AbuKashabeh, S. Al-Asheh et al., “Role of aqueous methyldiethanolamine (MDEA) as solvent in natural gas sweetening unit and process contaminants with probable reaction pathway,” Journal of Natural Gas Science and Engineering, vol. 24, 2015, pp. 124-131.
[5] -D. Fu, P. Zhang, and L. Wang, “Absorption performance of CO2 in high concentrated [Bmim][Lys]-MDEA aqueous solution,” Energy, vol. 113, 2016, pp. 1-8.
[6] -E. Alhseinat, P. Pal, A. Ganesan et al., “Effect of MDEA degradation products on foaming behavior and physical properties of aqueous MDEA solutions,” International Journal of Greenhouse Gas Control, vol. 37, 2015, pp. 280-286.
[7] -K. Qiu, J. F. Shang, M. Ozturk et al., “Studies of methyldiethanolamine process simulation and parameters optimization for high-sulfur gas sweetening,” Journal of Natural Gas Science and Engineering, vol. 21, 2014, pp. 379-385.
[8] -K Niazmehr, H. Fathi, A. R. Ansari et al., “Reduction of chloride ions in the diethanol amine cycle and improvement of the natural gas sweetening,” Journal of Natural Gas Science and Engineering, vol. 31, 2016, pp. 730-737.
[9] -N. M. A. Al-Lagtah, S. Al-Habsi, and S. A. Onaizi, “Optimization and performance improvement of Lekhwair natural gas sweetening plant using Aspen HYSYS,” Journal of Natural Gas Science and Engineering, vol. 26, 2015, pp. 367-381.
[10] -K. Qiu, J. F. Shang, M. Ozturk, T. F. Li, S. K. Chen, L. Y. Zhang, S. H. Gu, “Studies of methyldiethanolamine process simulation and parameters optimization for high-sulfur gas sweetening,” Journal of Natural Gas Science and Engineering, Volume 21, 2014, pp 379-385.
[11] -A. Krzemien, A. Wieckol, A. Smolinski, A. Koteras, A.W. Solny, “Assessing the risk of corrosion in amine-based CO2 capture process Journal of Loss Prevention in the Process Industries”, Volume 43,2016, pp 189-197.
[12] -A.S. Berrouk, R. Ochieng, “Improved performance of the natural-gas-sweetening Benfield-HiPure process using process simulation”, Fuel Processing Technology, Volume 127, 2014, pp 20-25.
[13] -N. Chen, J. Yan, L. Lili et al., “Preparation and performance of amine-tartaric salt as potential clay swelling inhibitor,” Applied Clay Science, vol. 138, 2017, pp. 12-16.
-[14] مهدی حیدری، مهدی جاویدی، "مطالعه الکتروشیمیایی بازدارندگی یکی از مشتقات ایمیدوزالین بر خوردگی دی اکسید کربن فولاد کربنی ساده و اثر یونهای ید بر عملکرد آن"، مواد نوین، جلد 2، شماره 2، 1390.
[15] -Oei Bai, Z. Liang, Y. Yoon et al., “Symmetrical bis-tertiary amines as novel CXCR4 inhibitors,” European Journal of Medicinal Chemistry, vol. 118, 2016, pp. 340-350.
[16] -A. Krzemień, A. Więckol-Ryk, A. Smoliński et al., “Assessing the risk of corrosion in amine-based CO2 capture process,” Journal of Loss Prevention in the Process Industries, vol. 43, 2016, pp. 189-197.
[17] -W. van Hal, J. S. Ledford, and X. Zhang, “Investigation of three types of catalysts for the hydration of ethylene oxide (EO) to monoethylene glycol (MEG),” Catalysis Today, vol. 123, no. 1, 2007, pp. 310-315.
[18] -Soi Yu, K. L. Sedransk Campbell, and D. R. Williams, “Carbon steel corrosion in piperazine-promoted blends under CO2 capture conditions,” International Journal of Greenhouse Gas Control, vol. 55, 2016, pp. 144-152.
[19] -Shmygleva, R. R. Kayumov, and Y. A. Dobrovolsky, “Calix(4)arene sulfonic acid complexes with halogenated acetic acids,” Solid State Ionics, vol. 302, 2017, pp. 202-206.
[20] -Shio Wang, J. Unger, J. D. Torrey et al., “Corrosion resistant polymer derived ceramic composite environmental barrier coatings,” Journal of the European Ceramic Society, vol. 34, no. 15, 2014, pp. 3597-3606.
[21] -Y. Fytianos, S. Ucar, A. Grimstvedt et al., “Corrosion Evaluation of MEA Solutions by SEM-EDS, ICP-MS and XRD,” Energy Procedia, vol. 86, 2016, pp. 197-204.
_||_