بررسی عوامل مختلف برعمق نفوذ و پهنای جوش آلیاژ Ti-6Al-4V جوشکاری شده با روش پلاسما
الموضوعات : فصلنامه علمی - پژوهشی مواد نوینیاسر وحیدشاد 1 , امیرحسین خدابخشی 2
1 - پژوهشکده حمل و نقل فضایی، پژوهشگاه فضایی ایران
2 - پژوهشکده حمل و نقل فضایی، پژوهشگاه فضایی ایران
الکلمات المفتاحية: ریزساختار, مارتنزیت, جوشکاری قوس پلاسما, آلفای محصور شده, آلیاژ تیتانیوم Ti-6Al-4V,
ملخص المقالة :
در این تحقیق، عوامل مختلف جوشکاری پلاسما بر روی کیفیت جوش ورق 3 میلیمتر آلیاژ تیتانیوم Ti-6Al-4V بررسی شده است. این عوامل شامل شدت جریان الکتریکی، سرعت خطی جوشکاری و ترکیب مختلف گاز پلاسما (آرگون ـ هلیوم) است که بر پهنای سطح و ریشه جوش (نشاندهنده مقدار حرارت ورودی) موثر میباشد. نتایج ماکروگرافی نشان میدهد که یک محدوده مشخص از شدت جریان الکتریکی و سرعت خطی وجود دارد که در داخل این محدوده نفوذ جوشکاری مناسب بوده و یک منطقه جوش، بدون هرگونه عیب داخلی و سطحی و با خواص مکانیکی مطلوب بدست میآید. همچنین با محافظت موضعی منطقه جوش، سطح دنباله و ریشه جوش با گاز آرگون با خلوص 5N میتوان از اکسید شدن منطقه جوش و تشکیل اکسید تیتانیوم بر سطح جوش جلوگیری کرد (جوش نقرهای رنگ براق). نتایج آزمون مکانیکی نشان میدهد که در صورت جوشکاری در داخل محدوده مناسب بدست آمده از عوامل جوشکاری، استحکام کششی فلز جوش نزدیک به فلز پایه میباشد. به علت اتوماتیک بودن روش جوشکاری، تکرارپذیری روش جوشکاری پلاسما بسیار مناسب بوده و کیفیت جوش به خوبی قابل کنترل میباشد. افزایش مقدار گاز هلیوم باعث گسترش منطقه جوش و عمق نفوذ بالاتر جوش میشود. بررسی ریزساختار منطقه جوش نشان میدهد که سه ساختار آلفای محصور شده دندانهای، ساختار آلفا ـ بتا (ویدمن اشتاتن) و مارتنزیت در ساختار فلز جوش وجود دارد.
1- ASM International, editor. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. 10th ed., United States of America : ASM Handbook, Vol. 2, 1990.
2- Y. M. Ahmed, K. S. M. Sahari, M. Ishak, "Welding of Titanium (Ti-6Al-4V) Alloys: A Review", Proceedings National Graduate Conference, Universiti Tenaga Nasional, Putrajaya Campus, 8-10 Nov 2012.
3- K Yonesawa, "Welding of titanium and titanium alloys", JorimalofL&ht hfetal li'eldingand Conrrniction, Vol. 25, pp. 149-163, 1987.
4- ASM International, editor. Heat Treating. 9th ed., United States of America : ASM Handbook, Vol. 4, 1991.
[5] ASM International, editor. Welding, Brazing, And Soldering. 9th ed., The United States Of America : THE ASM, Vol. 6, 1993.
6- A. Estaki, A. Khodabandelou. S. M. M. Hadavi, M. Tamizifar, M. Parsa, "The effect of post-welding protection and heat treatment on the mechanical properties of Ti-6Al-4V welded TIG alloy, Proceedings of 12th International Conference on Manufacturing Engineering, Tehran, Iran, 2011.
7- F. T. Khaniverdi, M. Karimi Nouri, M. Balbasi, "Influence of welding parameters on penetration depth and depth-to-width ratio of Ti-6Al-4V alloy TIG", Proceedings of the first National Conference on Mechanical Engineering of Iran, Shiraz, Iran, 2014.
8- T. Otani, "Titanium Welding Technology", Nippon Steel Technical Report, 2007, Vol. 95, pp. 88-92, 2007.
9- S. Cui, Y. Shi, T. Zhu, W. Liu, "Microstructure, texture, and mechanical properties of Ti-6Al-4V joints by K-TIG welding", Journal of Manufacturing Processes, Vol. 37, pp. 418-424, 2019.
10- F. Javidrad, H. Farghadani, M. Haydari, M. Mashayekhy, "An investigation into the microstructure and mechanical properties of Ti-3Al-2.5V under micro-plasma arc welding", Modares Mechanical Engineering. Vol. 13, pp. 199-209, 2014.
11- M. Baruah, S. Bag, "Influence of heat input in microwelding of titanium alloy by microplasma arc", Journal of Materials Processing Technology, Vol. 231, pp. 100–112, 2016.
12- M. B. Mathisen, L. Eriksen, Y. Yu, O. Jensrud, J. Hjelen, "Characterization of microstructure and strain response in Ti−6Al−4V plasma welding deposited material by combined EBSD and in-situ tensile test", Trans. Nonferrous Met. Soc. China, Vol. 24, pp. 3929−3943, 2014.
13- N. Saresh, M. G. Pillai, J. Mathew, "Investigations into the effects of electron beam welding on thick Ti–6Al–4V titanium alloy", Journal of Materials Processing Technology, Vol. 192-193, pp. 83-88, 2007.
14- V. Srimaneepong, T. Yoneyama, E. Kobayashi, H. Doi, T. Hanawa, "Comparative study on torsional strength, ductility and fracture characteristics of laser-welded alpha+beta Ti-6Al-7Nb alloy, CP Titanium and Co-Cr alloy dental castings", Dental Materials, Vol. 24, pp. 839–845, 2008.
15- S. Gh. Razavi, M. Saboktakinrizi, M. Taheri, "Mechanical and Physical Properties Laser and GTA Welding of Commercial Pure Titanium", Journal of New Materials, Vol. 4, pp. 71-80, 2014.
16- Y. Zhang, Y. S. Sato, H. Kokawa, S. H. Park, S. Hirano, "Microstructural characteristics and mechanical properties of Ti–6Al–4V friction stir welds", Materials Science and Engineering A, 2008, Vol. 485, pp. 448–455, 2008.
17- M. Sadeghi Gogheri, M. Shabani, E. Mirzapour, M. Kasiri, "Friction stir welding of dissimilar joint of aluminum alloy 5083 and commercially pure titanium", Journal of Welding Science and Technology of Iran 2016, Vol. 2, pp. 49-56, 2016.
18- K. H. Tseng, S. T. Hsieh, C. C.Tseng, Effect of process parameters of micro-plasma arc welding on morphology and qualityin stainless steel edge joint welds, Science and Technology of Welding and Joining, Vol. 8, pp. 423-430, 2003.
19- J. Szusta, N. Tüzün, Ö. Karakaş, "Monotonic mechanical properties of titanium grade 5 (6Al-4V) welds made by microplasma", Theoretical and Applied Fracture Mechanics, Vol. 100, pp. 27-38, 2019.
20- C. S. Wu, L. Wang, W.J. Ren, X. Y. Zhang, "Plasma arc welding: Process, sensing, control and modeling", Journal of Manufacturing Processes, Vol. 16, pp. 74-85, 2013.
21- F. Karimzadeh, M. Salehi, A. Saatchi, and M. Meratian, "Effect of microplasma arc welding process parameters on grain growth and porosity distribution of thin sheet Ti6Al4V alloy weldment", Materials and Manufacturing Processes, Vol. 20, pp. 205-219, 2005.
22- A. B. Short, D. G. McCartney, P. Webb and E. Preston, "Influence of nozzle orifice diameter in keyhole plasma arc welding", Science and Technology of Welding and Joining, Vol. 16, pp. 446-452, 2011.
23- J. P. L. SILVA, A. J. F. NETO, L. H. A. RAPOSO, V. R. NOVAIS, C. A. de ARAUJO, L. de A. L. CAVALCANTE, P. C. S. JÚNIOR, "Effect of Plasma Welding Parameters on the Flexural Strength of Ti-6Al-4V Alloy", Braz Dent J, Vol. 23, pp. 686-691, 2012.
24- X.F. Liu, C. S. Wu, C. B. Jia, G. K. Zhang, "Visual sensing of the weld pool geometry from the topside view in keyhole plasma arc welding", Journal of Manufacturing Processes, Vol. 26, pp. 74-83, 2017.
25- C. Jian-chun, P. Chun-xu, "Welding of Ti-6Al-4V alloy using dynamically controlled plasma arc welding process", Transactions of Nonferrous Metals Society of China, Vol. 21, pp. 1506-1512, 2011.
26- J. Chuan-bao, W. Chuan-song, Z. Yu-ming, "Sensing controlled pulse key-holing condition in plasma arc welding", Transactions of Nonferrous Metals Society of China, Vol. 19, pp. 341-346, 2009.
27- F. X. Wang, J. P. He, J. Fang ,F. Xiang, L. Ren, "Study of Titanium foil welding using Micro-plasma arc welding", Advanced Materials Research, Vols. 538-541, pp. 1469-1472, 2012.
28- A. Rahimi, M. Shamanian, A. Rahimi, J. Kangazian, "A Comparative Study on Direct and Pulsed Current Micro-plasma Arc Welding of Alloy Ti–6Al–4V", Trans Indian Inst Met, Vol. 71, pp. 3103-3110, 2018.
29- A. Sunny Kumar, T. V. Hanumanth Rao, V. V. S. Kesava Rao, R. T. Rama Kanth, "Optimizing pulsed current micro plasma arc welding parameters to maximize ultimate tensile strength of titanium (Ti-6Al-4V) alloy using Dragon fly algorithm", Materials Today Proceedings, In press, 2019.
30- Technical Committee ISO/TC44/SC10 "Quality management in the field of welding", Welding recommendation for welding of metallic materials-Part 1:General guidance for arc welding, Vol. 2, pp. 1-11, 2002.
31- Welding recommendation for welding of metallic materials-Part 1:General guidance for arc welding, 1998.
_||_