اثر غلظت کبالت بر رفتار مغناطیسی لایه های نازک آلیاژ آهن-کبالت تولید شده به روش کند و پاش موربی
الموضوعات : فصلنامه علمی - پژوهشی مواد نوینخلیل الله قیصری 1 , چونگ کیم انگ 2
1 - دانشیار مهندسی مواد، گروه مهندسی مواد دانشکده مهندسی دانشگاه شهید چمران اهواز
2 - استاد فیزیک مرکز مغناطیس و ابررسانایی دانشکده فیزیک دانشگاه ملی سنگاپور
الکلمات المفتاحية: پایداری حرارتی, کند و پاش موربی, لایۀ نازک آهن-کبالت, ناهمسانگردی مغناطیسی, بسامد تشدید فرومغناطیس,
ملخص المقالة :
در این پژوهش، اثر غلظت کبالت بر رفتار مغناطیسی لایۀ نازک آلیاژ آهن-کبالت با ترکیب CoxFe1−x (x= 0–0.3) مورد ارزیابی ساختاری و مغناطیسی قرار گرفت. به این منظور، لایهنشانی در زاویۀ نهشت 42 درجه به کمک روش کند و پاش یونی انجام شد. ساختار بلوری لایههای نشانده شده به کمک روش پراش سنجی پرتو ایکس ارزیابی گردید. ویژگیهای استاتیک و دینامیک مغناطیسی نیز به ترتیب از روی حلقۀ مغناطش و طیف نفوذپذیری مغناطیسی تعیین گردید. نتایج ارزیابیهای فازی نشان داد که الگوهای پراش مشابهی در همه لایهها شکل گرفته است که معرف ساختار کریستالی BCC با جهتگیری ترجیحی (110) است. با این وجود، پارامتر شبکه با افزایش غلظت کبالت روند کاهشی را دنبال کرده است. حلقۀهای M-H دو رفتار متفاوت در جهت آسانگرد و سختگرد را نشان داد. بر مبنای آن، میدان ناهمسانگردی مغناطیسی از حدود Oe 60 در لایۀ آهنی به Oe 330 در لایۀ Fe0.7Co0.3 افزایش یافت که به افزایش بسامد تشدید فرومغناطیسی از GHz 44/2 در لایۀ آهنی به GHz 66/7 در آلیاژ Fe0.7Co0.3 انجامید. بسامد تشدید فرومغناطیسی لایۀ آلیاژی Fe0.7Co0.3 کاهش اندکی را از مقدار GHz 66/7 در دمای محیط به GHz 98/6 در دمای K 420 نشان داد که گواه پایداری حرارتی مطلوب آن است.
1- R. Graillot-Vuillecot, A.L. Thomann, T. Lecas, C. Cachoncinlle, F. Millon, and A. Caillard, "Hot target magnetron sputtering process: Effect of infrared radiation on the deposition of titanium and titanium oxide thin films", Vacuum, vol. 181, pp. 109734(1-14), 2020.
2- M. Qadir, Y. Li, and C. Wen, "Ion-substituted calcium phosphate coatings by physical vapor deposition magnetron sputtering for biomedical applications: A review", Acta Biomaterialia, vol. 89, pp.14-32, 2019.
3- X. Qin, L. Di, C. Sui, R. Zhao, J. Fan, F. Wang, and X. Xu, "Effects of the Mn/Bi ratio on the magnetic properties of MnBi thin films grown by magnetron co-sputtering", Journal of Alloys and Compounds, vol. 842, pp.155694 (1-8), 2020.
4- V. Pretti Rossi, R. Pereira Bonini, A. Marino Gonçalves, A. José Gualdi, J. Antônio Eiras, and F. Luis Zabotto, "Silicon substrate orientation influence on structural and magnetic properties of BaFe12O19 thin films obtained by RF magneton sputtering", Journal of Magnetism and Magnetic Materials, vol. 504, pp. 166705(1-6), 2020.
5- D. Fu and X. Cheng, "Exploring the effect on the columnar structure and porosity of the synthesized Be films by oblique angle deposition in magnetron sputtering", Physica B: Condensed Matter, vol. 590, p.412221(1-7), 2020.
6- E.N. Sheftel and E.V Harin, "Two modes of magnetic structure of nanocrystalline FeZrN films prepared by oblique-angle magnetron sputtering", Journal of Magnetism and Magnetic Materials, vol. 479, pp.84-87, 2019.
7- Kh. Gheisari, and C. K. Ong. "Magnetic properties and thermal stability of nanocrystalline Fe films prepared by oblique sputtering deposition method", Physica B: Condensed Matter, vol. 595, pp. 412365 (1-7), 2020.
8- H. Chang, Y. Huang, C. Hsieh, C. Shih, W. Chang, and D. Xue, ''Magnetic properties and high frequency characteristic of obliquely sputtered Co–M (M= V and Nb) thin films'', Journal of Alloys and Compounds, vol. 539, pp. 276-279,2012.
9- X. Zhong, N.N. Phuoc, Y. Liu, and C. Ong, ''Employment of Co underlayer and oblique deposition to obtain high resonance frequency and excellent thermal stability in FeCo thin films'', Journal of Magnetism and Magnetic Materials, vol. 365, pp. 8-13, 2014.
10- L. Phua, N. Phuoc, and C. Ong, ''Investigation of the microstructure, magnetic and microwave properties of electrodeposited NixFe1−x (x= 0.2–0.76) films'', Journal of Alloys and Compounds, vol. 520, pp. 132-139, 2012.
11- X. Zhong, N.N. Phuoc, W.T. Soh, C. Ong, L. Peng, and L. Li, ''Tailoring the magnetic properties and thermal stability of FeSiAl-Al2O3 thin films fabricated by hybrid oblique gradient-composition sputtering'', Journal of Magnetism and Magnetic Materials, vol. 429, pp. 52-59, 2017.
12- L. Phua, N. Phuoc, and C. Ong, ''Effect of Ni concentration on microstructure, magnetic and microwave properties of electrodeposited NiCoFe films'', Journal of Alloys and Compounds, vol. 543, pp. 1-6, 2012.
13- N.N. Phuoc, and C. Ong, ''Influence of ferromagnetic thickness on dynamic anisotropy in exchange-biased MnIr/FeCo multilayered thin films'', Physica B: Condensed Matter, vol. 406(18), pp. 3514-3518, 2011.
14- K. Gheisari and C.K. Ong, "Enhancing High-Frequency Properties of Nanocrystalline Sputtered Fe Thin Films by Using MnIr Underlayer and Oblique Deposition", Journal of Superconductivity and Novel Magnetism, In press, 2020.
15- L. Phua, N. Phuoc, and C. Ong, ''Influence of field-annealing on the microstructure, magnetic and microwave properties of electrodeposited Co0.3Fe0.7 films'', Journal of Alloys and Compounds, vol. 553, pp. 146-15, 2013.
16- X. Liu, H. Kanda, and A. Morisako, ''The effect of underlayers on FeCo thin films'', Journal of Physics: Conference Series, vol. 266, p. 012037 (1-5), 2011.
17- S. Kaushalya, V. Husain, N.K. Barwal, Gupta, S. Hait, and S. Chaudhary, ''Tunable magnetic anisotropy in obliquely sputtered Co60Fe40 thin films on Si (100), Physica B: Condensed Matter, vol. 570, pp 1-5, 2019.
18- Y. Fukuma, Z. Lu, H. Fujiwara, G. Mankey, W. Butler, and S. Matsunuma, ''Strong uniaxial magnetic anisotropy in CoFe films on obliquely sputtered Ru underlayer'', Journal of Aapplied Physics, vol. 106, pp. 076101-3, 2009.
19-B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, second ed., John Wiley & Sons, Inc., Hoboken, NJ, 2009.
20- ا. صفری، خ. قیصری، و م. فربد،"بررسی ساختار و رفتار مغناطیسی پودر فریت نیکل تولیذ شذه به روش تخلیه قوس پلاسما"، مجله مواد نوین، جلد 7، شماره 4، ص 17-26، تابستان 1396.
21- Y. Liu, L. Chen, C.Y. Tan, H.J. Liu, and C.K. Ong, "Broadband complex permeability characterization of magnetic thin films using shorted microstrip transmission-line perturbation. Review of scientific instruments", vol. 76(6), pp.063911(1-8), 2005.
22- F. Tang, D. L. Liu, D. X. Ye, Y. P. Zhao, T. M. Lu, G. C. Wang, and A. Vijayaraghavan, ''Magnetic properties of Co nanocolumns fabricated by oblique-angle deposition'', Journal of Applied Physics, vol. 93(7), pp. 4194-4200, 2003.
23- N.N. Phuoc, G. Chai, and C. Ong, ''Enhancing exchange bias and tailoring microwave properties of FeCo/MnIr multilayers by oblique deposition'', Journal ofApplied Physics, vol. 112(11), pp. 113908, 2012.
24- G. Chai, N.N. Phuoc, and C. Ong, ''Optimizing high-frequency properties of stripe domain ferrite doped CoFe thin films by means of a Ta buffer layer'', Journal of Physics D: Applied Physics, vol. 46(41), pp. 415001, 2013.
25- X. Zhong, N.N. Phuoc, W.T. Soh, C. Ong, and L. Li, ''Dynamic magnetization of NiZn ferrite doped FeSiAl thin films fabricated by oblique sputtering'', Journal of Magnetism and Magnetic Materials, vol. 432, 373-381, 2017.
26- N.N. Phuoc, and C. Ong, ''FeCoHfN thin films fabricated by co-sputtering with high resonance frequency'', Journal of Alloys and Compounds, vol. 509(9), pp. 4010-4013, 2011.
27- X. Zhong, N.N. Phuoc, G. Chai, Y. Liu, and C. Ong, ''Thermal stability and dynamic magnetic properties of FeSiAl films fabricated by oblique deposition'', Journal of Alloys and Compounds, vol. 610, pp. 126-131, 2014.
_||_