کاربرد مدلهای شبکه عصبی مصنوعی، نسبت فراوانی و تابع شواهد قطعی در تهیه نقشه حساسیت به وقوع سیل در حوزه آبخیز هراز: الگویی برای مطالعات مخاطرات سیلاب شهری
الموضوعات :
فصلنامه علمی و پژوهشی پژوهش و برنامه ریزی شهری
هیمن شهابی
1
1 - گروه ژئومورفولوژی، دانشکده منابع طبیعی، دانشگاه کردستان، سنندج، ایران
تاريخ الإرسال : 24 الأحد , رمضان, 1441
تاريخ التأكيد : 12 الجمعة , ذو القعدة, 1441
تاريخ الإصدار : 13 الجمعة , ذو الحجة, 1442
الکلمات المفتاحية:
شبکه عصبی مصنوعی,
دادهکاوی,
تابع شواهد قطعی,
نسبت فراوانی,
مخاطرات سیلاب شهری,
ملخص المقالة :
در این تحقیق برای تهیه نقشه حساسیت به وقوع سیل در حوزه آبخیز هراز در استان مازندران از روشهای شبکه عصبی مصنوعی (ANN)، نسبت فراوانی (FR) و تابع شواهد قطعی (EBF) استفاده شده است و برای دستیابی به هدف پژوهش از ده پارامتر موثر در وقوع سیلاب از قبیل شیب، انحنای زمین، فاصله از رودخانه، طبقات ارتفاعی، بارش، شاخص توان رودخانه (SPI)، شاخص رطوبت توپوگرافی (TWI)، لیتولوژی، کاربری اراضی و شاخص تفرق پوشش گیاهی (NDVI) استفاده گردید. همچنین، موقعیت جغرافیایی 211 نقطه سیلگیر در منطقه تهیه شده و نقاط به صورت تصادفی به گروههایی متشکل از 151 نقطه (70%) و 60 نقطه (30%) بهترتیب برای واسنجی و اعتبارسنجی تقسیم شدهاند. سپس احتمال رخداد سیل برای هر کلاس از هر پارامتر محاسبه گردید. وزنهای محاسبه شده برای هر کلاس در سیستم اطلاعات جغرافیایی در لایههای مربوطه اعمالگردیده و نقشههای حساسیت به وقوع سیل منطقه مورد مطالعه بهدست آمد. براساس نقشه پتانسیل سیلخیزی، منطقه به 5 کلاس با حساسیت خیلی زیاد، زیاد، متوسط، کم و خیلی کم تقسیم گردید. روشهای مذکور توسط روش منحنی مشخصه عملکرد سیستم (AUC) ارزیابی شدند. نتایج حاکی از آن است که طبقات ارتفاعی پایین و نزدیک رودخانه دارای احتمال و حساسیت بالایی نسبت به وقوع سیل میباشند. همچنین نتایج نشان داد که تکنیک نسبت فراوانی (AUC=0.97)، تابع شواهد قطعی (AUC=0.94) و شبکه عصبی مصنوعی (AUC=0.87) بهترتیب اولویت، دارای بیشترین دقت در پیشبینی وقوع سیل بودهاند. از اینرو مدلهای مذکور به منظور پیشبینی پتانسیل خطر سیل بهویژه در نواحی مختلف از جمله فضاهای شهری به دلیل کارایی بالا، میتواند مفید و قابل اعتماد باشند.
المصادر:
1. Althuwaynee, O.F., Pradhan, B., and Lee, S. (2012): Application of an evidential belief function model in landslide susceptibility mapping. Comput. Geosci. 44, 120–135.
2. Althuwaynee, O.F., Pradhan, B., Park, H.J., and Lee, J.H. (2014): A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena 114, 21–36.
3. Billa L, Shattri M, Mahmud AR, and Ghazali, AH. (2006): Comprehensive planning and the role of SDSS in flood disaster management in Malaysia. Disaster Prev Manage 15:233–240.
4. Dai, FC/, Lee, CF., Li, J., and Xu, ZW. (2001): Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environ Geol 40:381–391.
5. Dixon, B. (2005): Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: a GIS-based sensitivity analysis. J Hydrol 309:17–38.
6. Esfandiary Darabad, F., Rahimi, M., and Pourmortaza, G. (2019): Flood zonation of Agerloo Cay Basin using the L-THIA method and fuzzy logic, quantitative geomorphological researches, 8(2), pp: 155 - 171. (in Persian)
7. Ferna´ndez, DS., and Lutz, MA. (2010): Urban flood hazard zoning in Tucuma´n Province, Argentina, using GIS and multicriteria decision analysis. Eng Geol 111:90–98.
8. Islam, M.M., Sado, K., Owe, M., Brubaker, K., Ritchie, J., and Rango, A. (2001): Flood damage and management modelling using satellite remote sensing data with GIS: case study of Bangladesh. IAHS Publication, pp. 455-457.
9. Jamini, Davood., Amini, Abbas., Ghadermarzi, Hamed and Tavakoli, Jafar (2017): Measurement of Food Security and Investigation of its Challenges in Rural Areas (Case Study: Badr District from Ravansar County), JOURNAL OF REGIONAL PLANNING, 7 (27): pp: 87-102. (in Persian)
10. Jung, IW., Chang, H., and Moradkhani, H. (2011): Quantifying uncertainty in urban flooding analysis considering hydro-climatic projection and urban development effects. Hydrol Earth Syst Sci 15(2):617–633.
11. Khosravi, K., Pham, B.T., Chapi, K., Shirzadi, A., Shahabi, H., Revhaug, I., Prakash, I., and Bui, D.T. (2018): A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Science of the Total Environment, 627, pp.744-755.
12. Khosravi, K., Pourghasemi, H.R., Chapi, K., and Bahri, M. (2016): Environ Monit Assess, 188: 656. doi:10.1007/s10661-016-5665-9.
13. Khosroshahi, M. (2016): An overview to identification and prioritization of flood prone areas using SSSE method in sub-watersheds, Iranian Journal of Watershed Management Science and Engineering, 10(33), pp: 59 – 72. (in Persian)
14. Kia, MB., Pirasteh, S., Pradhan, B., Mahmud, AR., Sulaiman, WNA., and Moradi, A. (2012): An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environ Earth Sci 67:251–264.
15. Kron, W. (2002): Keynote lecture: flood risk = hazard * exposure * vulnerability. In: Proceedings of the flood defence. Science Press, New York.
16. Lee, M.J., Kang, J.E., and Jeon, S (2012): Application of frequency ratio model and validation for predictive flooded area susceptibility mapping using GIS. In: Geoscience and Remote Sensing Symposium (IGARSS), Munich. 895–898.
17. Merz, B., Thieken, AH., and Gocht, M. (2007): Flood risk mapping at the local scale: concepts and challenges. In: Flood risk management in Europe. Springer, Amsterdam, pp 231–251.
18. Miller, JR., Ritter DF., and Kochel RC (1990): Morphometric assessment of lithologic controls on drainage basin evolution in the Crawford Upland, south-central Indiana. Am J Sci 290:569–599.
19. Moore, ID., Grayson, RB., and Ladson, AR. (1991): Digital terrain modelling: a review of hydrological, geomor- phological, and biological applications. Hydrol Process 5:3–30.
20. Nampak, H., Pradhan, B. and Manap, M.A. (2014): Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. Journal of Hydrology, 513, pp.283-300.
21. Nasiri, Z., and Talebi, A. (2020): prioritization of sub-watersheds from flooding viewpoint using the Hec-Hms model in upstream of Shiraz Khoshk River, Iranian Journal of Eco Hydrology, 7(1), pp: 47-57. (in Persian)
22. Nazaripouya, H. (2019): Evaluation of Factor Analysis Method in Prioritizing Flood in Northern Sub-basins of Alvand Hamedan, Journal of Watershed Management Research, 10(20), pp: 49-61. (in Persian)
23. Nozari, H., Marofi, S., and Edirsh, M. (2017): Identification and prioritize of potential areas to flood inundation in the Dez basin using WMS, Journal of Range and Watershed Management, 70(3), pp: 805 - 820. (in Persian)
24. Oh, H.J., and Pradhan, B. (2011): Application of a neuro-fuzzy model to landslide- susceptibility mapping for shallow landslides in a tropical hilly area. Computer and Geoscience, 37, 1264–1276.
25. Ohlmacher, GC., and Davis, JC. (2003): Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng Geol 69:331–343.
26. Porhemmat, J. (2016): A model on investigation on flood hazard over watersheds of Iran, Iranian Journal of Watershed Management Science and Engineering, 10 (34), pp: 1-14. (in Persian)
27. Pourghasemi, H.R., and Beheshtirad, M. (2014): Assessment of a data-driven evidential belief function model and GIS for groundwater potential mapping in the Koohrang Watershed, Iran. Geocarto International, 30(6): 662-685.
28. Pourghasemi, H.R., Mohammadi, M., and Pradhan, B. (2012): Landslide susceptibility mapping using index of entropy and conditional probability models at Safarood Basin, Iran. Catena 97, 71–84, <http://dx.doi.org/10.1016/j.catena.2012.05.005>.
29. Pradhan B, and Lee, S. (2010): Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environ Earth Sci 60:1037-1054.
30. Pradhan, B. (2013): A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput. Geosci. 51, 350–365.
31. Pradhan, B., Abokharima, M.H., Jebur, M.N., and Tehrany, M.S. (2014): Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS. Natural hazards, 73(2), pp.1019-1042.
32. Pradhan, B., and Youssef, A.M. (2011): A 100‐year maximum flood susceptibility mapping using integrated hydrological and hydrodynamic models: Kelantan River Corridor, Malaysia. Journal of Flood Risk Management, 4(3), pp.189-202.
33. Pradhan, B., Hagemann, U., Shafapour Tehrany, M., and Prechtel, N. (2014): An easy to use ArcMap based texture analysis program for extraction of flooded areas from TerraSAR-X satellite image. Comput. Geosci. 63, 34-43.
34. SCWMRI (Soil Conservation and Watershed Management Research Institute). (2015): Atlas of the country's watersheds, Publishers: Agricultural Research Education and Extension Organization, Tehran. (in Persian)
35. Shamsoddini, Ali and Nasibi, Sasan (2019): The study of urban furniture layout on the urban area's vitality (case study: the whole area of Shiraz), Journal of Research and Urban Planning, 10 (37), pp: 83-96. (in Persian)
36. Shamsodini, A., Jamini, D., and Jamshidi, A. (2016): Measurement and Analyses of Social Stability in Rural Area (Case Study: Javanrood Township). Journal of Rural Research. 7(3), 486-503. (in Persian)
37. Smith, K. (2001): Environmental hazards assessing risk and reducing disaster, 3rd edn. Routledge, fetter lane, London.
38. Talebi, A., Eslami, Z., and Abbasi, A. (2019): Comparing prioritization from flooding of sub-basins using HEC-HMS model and experimental methods in Eskandari Watershed, Journal of Watershed Engineering and Management, 11(2), pp: 336 - 343. (in Persian)
39. Tehrany, M.S., Lee, M.J., Pradhan, B., Jebur, M.N., and Lee, S. (2014b): Flood susceptibility mapping using integrated bivariate and multivariate statistical models. Environ. Earth sci. 72(10): 4001-4015.
40. Tehrany, M.S., Pradhan, B., and Jebur, M.N. (2013): Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. Journal of Hydrology, 504: 69-79.
41. Tehrany, M.S., Pradhan, B., and Jebur, M.N. (2014a): Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J. Hydrol. 512: 332-343.
42. Tehrany, M.S., Pradhan, B., Mansour, Sh., and Ahmad, N. (2015): Flood susceptibility assessment using GIS-based support vector machine model with different kernel types.125:91-101.
43. Tunusluoglu, M., Gokceoglu, C., Nefeslioglu, H., and Sonmez, H. (2008): Extraction of potential debris source areas by logistic regression technique: a case study from Barla, Besparmak and Kapi mountains (NW Taurids, Turkey). Environ Geol 54:9–22.
44. Youssef, A.M., Pradhan, B., Pourghasemi, H.R., and Abdullahi, S. (2014): Landslide susceptibility assessment at Wadi Jawrah Basin, Jizan region, Saudi Arabia using two bivariate models in GIS. Geosciences Journal, 19(1):113-134.
45. Zarghami, S., Teymouri, A., Mohammadian, H and Shamaei, A (2016): Measuring and evaluating urban neighborhood’s resilience against earthquake: the case of Zanjan downtown, Journal of Research and Urban Planning, 7(27): pp: 77-92. (in Persian)
_||_