Influence of Grating Parameters on the Field Enhancement of an Optical Antenna under Laser Irradiation
الموضوعات : فصلنامه نانوساختارهای اپتوالکترونیکیMohammad Reza Mohebbifar 1 , Mehdi Zohrabi 2
1 - Department of Physics, Faculty of Science, Malayer University, Malayer, Iran
2 - Department of Optics and Nanophotonics, Institute of Physics, Kazan Federal University, Kazan, Russia
الکلمات المفتاحية: Surface Plasmon, Optical Antenna, Localized Plasmon, Particle Swarm Optimization (PSO), Gold Tip, Field Enhancement,
ملخص المقالة :
In this study, a new approach for simulation of electric field enhancement of
plane wave laser around optical antenna was used to convert free-propagating optical
radiation to localized energy. A tapered gold tip design as a novel geometry of optical
antenna is introduced and numerically analyzed based on particle swarm optimization
(PSO) by solving the Maxwell equations with FDTD simulation Lumerical Software.
Five simulation stages of grating parameters to reach the maximum output intensity at
the gold tip hot spot were performed with 90° laser incident angle. The optimal values
of the grating period “a”, distance of the last circular grating from tip apex “b”, depth of
etched grating “T” and duty cycle of grating “D.C” were obtained a=262.2 nm, b=759.5
nm, T=30.1 nm, and D.C.=0.31 respectively. By using these optimal parameters for the
gold tapered tip with a cone angle of 30° at room temperature, the maximum output
intensity (|Emax|2) at the hot spot was obtained 52.4751.
[1] L. Novotny, P. Bharadwaj, B. Deutsch, Optical antennas. Advances in Optics and Photonics 1(3) (2009, Aug) 438.483.
[2] Masoud Rezvani, Maryam Fathi Sepahvand, Simulation of Surface Plasmon Excitation in a Plasmonic Nano-Wire Using Surface Integral Equations, Journal of Optoelectronical Nanostructures, 1(1) (2016, Mar) 51-64.
[3] Mohsen Olyaee, Mohammad Bagher Tavakoli, Abbas Mokhtari, Propose, Analysis and Simulation of an All Optical Full Adder Based on Plasmonic Waves using Metal-Insulator-Metal Waveguide Structure, Journal of Optoelectronical Nanostructures, 4 (3) (2019, Sep) 95-116.
[4] Krenz, Peter, Javier Alda, Glenn Boreman, Orthogonal infrared dipole antenna, Infrared Physics &Technology, 51(2) (2008, Mar) 340-343.
[5] Nanfang Yu, Ertugrul Cubukcu, Laurent Diehl, Mikhail A. Belkin, Kenneth B. Crozier, Federico Capasso, David Bour, Scott Corzine, Gloria Hofler, Plasmonic quantum cascade laser antenna, Applied Physics Letters 91(17) (2007, Oct) 1-2
[6] A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, R. Hillenbrand, Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap, Physical review letters, 97(3) (2006, Sep) 1-4.
[7] Liang Tang, Sukru Ekin Kocabas, Salman Latif, Ali K. Okyay, Dany-Sebastien Ly-Gagnon, Krishna C. Saraswat, David A. B. Miller, Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna, Nature Photonics, 2(2) (2008, Jun) 226-229.
[8] Pelton Matthew, Javier Aizpurua, Garnett Bryant, Metalپ]nanoparticle plasmonics, Laser & Photonics Reviews, 2(3) (2008, Mar) 136-159.
[9] J. N. Farahani, D. W. Pohl, H.J. Eisler, B. Hecht, Single quantum dot coupled to a scanning optical antenna: a tunable superemitter, Physical Review Letters, 95(1), (2005, Jul) 82-90.
[10] P.F. Liao, A. Wokaun, Lightning rod effect in surface enhanced Raman scattering, The Journal of Chemical Physics, 76(1) (1982, Jan) 751.752.
[11] S. Berweger, J.M. Atkin, R.L. Olmon, M.B. Raschke, Adiabatic tip-plasmon focusing for nano-Raman Spectroscopy, The Journal of Physical Chemistry Letters, 24(1) (2010, Feb) 3427.3432.
[12] Ho.ppener, Christiane, Ryan Beams, Lukas Novotny, Background suppression in near-field optical imaging, Nano letters, 1(2) (2009, Mar) 903-908.
[13] M.R. Mohebbifar, Optical force near the laser illuminated tapered tip, Belgorod State University Scientific Bulletin, 51(1) (2019, Mar) 115-120.
[14] Mehdi Zohrabi, Mohammad Reza Mohebbifar, Electric field enhancement around gold tip optical antenna, Plasmonics, 10 (4) (2015, Dec) 887.892.
[15] E. Briones, J. Alda, F. J. Gonzalez, Conversion efficiency of broad-band rectennas for solar energy harvesting applications, Optics Express, 21(2) (2013, Sep) 412-418.
[16] M. Hussein, N. F. Fahmy Areed, M. F. O. Hameed, S. S. Obayya, Design of flower-shaped dipole nano-antenna for energy harvesting, Optoelectronics IET, 8(1), (2014, Apr) 167-173.
[17] J. L. Stokes, Y. Yu, Z. H. Yuan, J. R. Pugh, M. Lopez-Garcia, N. Ahmad, Analysis and design of a cross dipole nanoantenna for fluorescence-sensing applications, Journal of the Optical Society of America B, 31(3) (2014, May) 302-310.
[18] M. N. Gadalla, M. Abdel-Rahman, and A. Shamim, Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification, Scientific Reports, 4(6) (2014, Dec) 4270.
[19] A. Taflove, S. C. Hagness, Computational Electrodynamics: the Finite - Difference Time . Domain Method, 3th ed., Artech House press, 2005, 25-45.
[20] B. C. Galarreta, I. Rupar, A. Young, and F. LagugnپLe-Labarthet. Mapping hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films, The Journal of Physical Chemistry C, 115(31) (2011, Oct) 15318.15323.
[21] L. Novotny, Optical antennas tuned to pitch, Nature, 455(8) (2008, Oct), 879-882.
[22] H.G. Frey, S. Witt, K. Felderer, R. Guckenberger, High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip, Physical review letters, 93(20), (2004, Dec) 200801.
[23] J.M. Gerton, L.A. Wade, G.A. Lessard, Z. Ma, S.R. Quake, Tip-enhanced fluorescence microscopy at 10 nanometer resolution, Physical review letters, 93(18) (2004, Oct) 180801.
[24] Martin, Y. C., Hamann, H. F., Wickramasinghe, H. K., Strength of the electric field in apertureless near-field optical microscopy, Journal of Applied Physics, 89 (1) (2001, Jan) 5774.5778.
[25] Liming Zhu, Yiheng Yin, Lingling Dai, Yanhui Hu, Jiang Nan, Zheny iZheng, Chen Cai, Weisheng Zhao, Ming Ding, Round-tower plasmonic optical microfiber tip for nanofocusing with a high field enhancement, Optics Communications, 453(15) (2019, Dec) 124358.
[26] James P. Heath, John H. Harding, Derek C. Sinclair, Julian S. Dean, Electric field enhancement in ceramic capacitors due to interface amplitude roughness, Journal of the European Ceramic Society, 39(4) (2018, Nov) 1170-1177.
[27] J. Kennedy, R. Eberhart, Particle Swarm Optimization, Proceedings of IEEE International Conference on Neural Networks. 4(1) (1995, Jan) 1942-1948.
[28] Edgar Briones, Riemann Ruiz-Cruz, Joel Briones, Natalia Gonzalez, Jorge Simon, Mayela Arreola, Gregorio Alvarez-Alvarez, Particle swarm optimization of nanoantenna-based infrared detectors., Optics express 26(22) (2018, Mar) 28484-28496.
[29] Eduardo Fontana, Thickness optimization of metal films for the development of surface-plasmon-based sensors for nonabsorbing media, 45(29) (2006, Oct) 7632-7642.
[30] David Furman, Benny Carmeli, Yehuda Zeiri, Ronnie Kosloff, Enhanced particle swarm optimization algorithm: Efficient training of reaxff reactive force fields, Journal of chemical theory and computation 14(6) (2018, May) 3100-3112.
[31] Rogelio Rodriguez-Oliveros, Ramon Paniagua-Dominguez, Jose A. Sanchez-Gil, Demetrio Macias, Plasmon spectroscopy: Theoretical and numerical calculations, and optimization techniques, Nanospectroscopy 1(1) (2016, Feb) 67.96.
[32] Y. Shi, R.C. Eberhart, A modified particle swarm optimizer, Presented at Proceedings of IEEE International Conference on Evolutionary Computation (1998, May) 69.73.
[33] J. Kennedy, The particle swarm: social adaptation of knowledge, Presented at Proceedings of IEEE International Conference on Evolutionary Computation (1997, May) 303.308.
[34] J. Kennedy, R. C. Eberhart, Swarm Intelligence, 1st edition, Morgan Kaufmann press, 2001, 1-55.
[35] R. Poli, An analysis of publications on particle swarm optimisation applications, Technical Report CSM-469, Department of Computer Science, University of Essex, UK. (2007, Apr)
[36] R. Poli, Analysis of the publications on the applications of particle swarm optimisation, Journal of Artificial Evolution and Applications, 24(5) (2008, Sep) 1.10.
[37] M. R. Bonyadi, Z. Michalewicz, Evolutionary Computation. 25 (1) (2017, Feb) 1.54.
[38] Y. Zhang, A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications, Mathematical Problems in Engineering, 13 (5) (2015, Mar), 931256.
[39] Zeineb Abdmouleh, Adel Gastli, Lazhar Ben-Brahim, Mohamed Haouari, Nasser Ahmed Al-Emadi, Review of optimization techniques applied for the integration of distributed generation from renewable energy sources, Renewable Energy 113 (12) (2017, Dec) 266-280.
[40] Y. M. El-Toukhy, A. M. Heikal, M. F. O. Hameed, M. M. Abd-Elrazzak, and S. S. A. Obayya, Optimization of nanoantenna for solar energy harvesting based on particle swarm technique, Presented at IEEE/ACES International Conference on Wireless Information Technology and Systems (ICWITS) and Applied Computational Electromagnetics (ACES), (2016, Sep) 1-2.
[41] N. Jin and Y. Rahmat-Samii, Particle swarm optimization for antenna designs in engineering electromagnetics, Journal of Artificial Evolution and Applications, 8(1) (2008, Feb) 1-5.
[42] S. Xu, Y. Rahmat-Samii, D. Gies, Shaped-reflector antenna designs using particle swarm optimization: An example of a direct-broadcast satellite antenna, Microwave and Optical Technology Letters, 48 (2) (2006, Mar) 1341-1347.
[43] Y. M. El-Toukhy, M. Hussein, M. F. O. Hameed, A. M. Heikal, M. M. Abd-Elrazzak, and S. S. A. Obayya, Optimized tapered dipole nanoantenna as efficient energy harvester, Optics Express, 24 (4) (2016, Mar) 1107-1122.
[44] Huaqiao Zhao, Huotao Gao, Ting Cao and Boya Li, Efficient full-spectrum utilization, reception and conversion of solar energy by broad-band nanospiral antenna, Optics Express, 26 (2) (2018, Apr) 178-191.