Strained Carbon Nanotube (SCNT) Thin Layer Effect on GaAs Solar Cells Efficiency
الموضوعات : فصلنامه نانوساختارهای اپتوالکترونیکیS.N jafari 1 , Abbas Ghadimi 2 , s. rouhi 3
1 - Department of Electrical Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran,
2 - Department of Electrical Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran
3 - Department of Mechanical Engineering, Langarud Branch, Islamic Azad University, Langarud, Iran,
الکلمات المفتاحية: Strained Carbon Nanotubes (SCNT), Gallium-Arsenide (GaAs), Transparent, Single-junction Solar cells,
ملخص المقالة :
In this paper, the effect of strain on the efficiency of GaAs solar cell is
investigated. It has been shown that the applied strain during the synthesizing of carbon
nanotubes (CNTs) leads to changing some of its physical properties. This means that strains
can cause numerous changes in the structures. By using a strained layer of the carbon
nanotubes on the GaAs solar cell, the effect of this layer on the performance of the GaAs
solar cell is evaluated. This CNT layer can be used for several purposes. The first is to
create a transparent electrical conductor at the cell surface to increase the output current.
This purpose is one of the most important applications of this layer. But the second and
more important goal is to capture more photons and reduce the emission or reflection of
light emitted onto the cell surface. It is found that the mentioned goals cannot be satisfied
simultaneously. Accordingly, to solve this problem, two different layers were used to
achieve the ideal conditions. It has been shown that the use of a 10% uniaxial strained CNT
layer leads to increase the photon absorption rate onto a non-strained CNT layer for
electrical purposes. The efficiency of the single-junction GaAs solar cell with the above
conditions reaches about 31% which is about 2% higher than the model without strain.
[1] R. Bkakri, A. Sayari, E. Shalaan, S. Wageh, A. Al-Ghamdi, A. Bouazizi, Effects of the graphene doping level on the optical and electrical properties of ITO/P3HT: Graphene/Au organic solar cells, superlattices and microstructures, 76 (2014) 461-471.
[2] T. Mahmoudi, Y. Wang, Y.-B. Hahn, Graphene and its derivatives for solar cells application, Nano Energy, 47 (2018) 51-65.
[3] H. Liu, P. Liu, L.-a. Bian, C. Liu, Q. Zhou, Y. Chen, Electrically tunable terahertz metamaterials based on graphene stacks array, Superlattices and Microstructures, 112 (2017) 470-479.
[4] M.B. Rhouma, M. Oueslati, B. Guizal, Surface plasmons on a doped graphene sheet with periodically modulated conductivity, Superlattices and Microstructures, 96 (2016) 212-219.
[5] S. Gong, Z. Zhu, S. Meguid, Anisotropic electrical conductivity of polymer composites with aligned carbon nanotubes, Polymer, 56 (2015) 498-506.
[6] R. Kotsilkova, E. Ivanov, D. Bychanok, A. Paddubskaya, M. Demidenko, J. Macutkevic, S. Maksimenko, P. Kuzhir, Effects of sonochemical modification of carbon nanotubes on electrical and electromagnetic shielding properties of epoxy composites, Composites Science and Technology, 106 (2015) 85-92.
[7] C. Ma, H.-Y. Liu, X. Du, L. Mach, F. Xu, Y.-W. Mai, Fracture resistance, thermal and electrical properties of epoxy composites containing aligned carbon nanotubes by low magnetic field, Composites Science and Technology, 114 (2015) 126-135.
[8] J.R. Bautista-Quijano, P. Potschke, H. Brunig, G. Heinrich, Strain sensing, electrical and mechanical properties of polycarbonate/multiwall carbon nanotube monofilament fibers fabricated by melt spinning, Polymer, 82 (2016) 181-189.
[9] T.S. Williams, N.D. Orloff, J.S. Baker, S.G. Miller, B. Natarajan, J. Obrzut, L.S. McCorkle, M. Lebron-Colo.n, J. Gaier, M.A. Meador, Trade-off between the mechanical strength and microwave electrical properties of functionalized and irradiated carbon nanotube sheets, ACS applied materials & interfaces, 8 (2016) 9327-9334.
Strained Carbon Nanotube (SCNT) Thin Layer Effect on GaAs Solar Cells Efficiency * 105
[10] I. Burmistrov, N. Gorshkov, I. Ilinykh, D. Muratov, E. Kolesnikov, E. Yakovlev, I. Mazov, J.-P. Issi, D. Kuznetsov, Mechanical and electrical properties of ethylene-1-octene and polypropylene composites filled with carbon nanotubes, Composites Science and Technology, 147 (2017) 71-77.
[11] X. Zheng, Y. Huang, S. Zheng, Z. Liu, M. Yang, Improved dielectric properties of polymer-based composites with carboxylic functionalized multiwalled carbon nanotubes, Journal of Thermoplastic Composite Materials, 32 (2019) 473-486.
[12] Y.V. Shtogun, L.M. Woods, Electronic and magnetic properties of deformed and defective single wall carbon nanotubes, Carbon, 47 (2009) 3252-3262.
[13] C. Zhu, A. Chortos, Y. Wang, R. Pfattner, T. Lei, A.C. Hinckley, I. Pochorovski, X. Yan, J.W.-F. To, J.Y. Oh, Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors, Nature Electronics, 1 (2018) 183.
[14] R. Kumar, S.B. Cronin, Optical properties of carbon nanotubes under axial strain, Journal of nanoscience and nanotechnology, 8 (2008) 122-130.
[15] L. Hu, W. Yuan, P. Brochu, G. Gruner, Q. Pei, Highly stretchable, conductive, and transparent nanotube thin films, Applied Physics Letters, 94 (2009) 161108.
[16] A. Darvishzadeh, N. Alharbi, A. Mosavi, N.E. Gorji, Modeling the strain impact on refractive index and optical transmission rate, Physica B: Condensed Matter, 543 (2018) 14-17.
[17] Y. Li, P.S. Owuor, Z. Dai, Q. Xu, R.V. Salvatierra, S. Kishore, R. Vajtai, J.M. Tour, J. Lou, C.S. Tiwary, Strain-controlled optical transmittance tuning of three-dimensional carbon nanotube architectures, Journal of Materials Chemistry C, 7 (2019) 1927-1933.
[18] Y. Chu, P. Gautreau, T. Ragab, C. Basaran, Strained phonon.phonon scattering in carbon nanotubes, Computational Materials Science, 112 (2016) 87-91.
[19] S. Fotoohi, S. Haji Nasiri, Vacancy Defects Induced Magnetism in Armchair Graphdiyne Nanoribbon, Journal of Optoelectronical Nanostructures, 4 (2019) 15-38.
106 * Journal of Optoelectronical Nanostructures Autumn 2020 / Vol. 5, No. 4
[20] H. Rahimi, Absorption Spectra of a Graphene Embedded One Dimensional Fibonacci Aperiodic Structure, Journal of Optoelectronical Nanostructures Autumn, 3 (2018).
[21] N. Karachi, M. Emadi, M. Servatkhah, Computational Investigation on Structural Properties of Carbon Nanotube Binding to Nucleotides According to the QM Methods, Journal of Optoelectronical Nanostructures, 4 (2019) 99-124.
[22] A. Bett, F. Dimroth, G. Stollwerck, O. Sulima, III-V compounds for solar cell applications, Applied Physics A, 69 (1999) 119-129.
[23] M. Bosi, C. Pelosi, The potential of IIIپ]V semiconductors as terrestrial photovoltaic devices, Progress in Photovoltaics: Research and Applications, 15 (2007) 51-68.
[24] F. Schwierz, J.J. Liou, RF transistors: Recent developments and roadmap toward terahertz applications, Solid-State Electronics, 51 (2007) 1079-1091.
[25] C. Chang, F. Kai, GaAs high-speed devices: physics, technology, and circuit applications, John Wiley & Sons1994.
[26] W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of pپ]n junction solar cells, Journal of applied physics, 32 (1961) 510-519.
[27] C. Algora, E. Ortiz, I. Rey-Stolle, V. Diaz, R. Pena, V.M. Andreev, V.P. Khvostikov, V.D. Rumyantsev, A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns, IEEE Transactions on Electron Devices, 48 (2001) 840-844.
[28] K. Derendorf, S. Essig, E. Oliva, V. Klinger, T. Roesener, S.P. Philipps, J. Benick, M. Hermle, M. Schachtner, G. Siefer, Fabrication of GaInP/GaAs//Si solar cells by surface activated direct wafer bonding, IEEE Journal of Photovoltaics, 3 (2013) 1423-1428.
[29] E.D. Kosten, J.H. Atwater, J. Parsons, A. Polman, H.A. Atwater, Highly efficient GaAs solar cells by limiting light emission angle, Light: Science & Applications, 2 (2013) e45.
[30] C.-W. Cheng, K.-T. Shiu, N. Li, S.-J. Han, L. Shi, D.K. Sadana, Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics, Nature communications, 4 (2013) 1577.
Strained Carbon Nanotube (SCNT) Thin Layer Effect on GaAs Solar Cells Efficiency * 107
[31] O.D. Miller, E. Yablonovitch, S.R. Kurtz, Strong internal and external luminescence as solar cells approach the Shockley.Queisser limit, IEEE Journal of Photovoltaics, 2 (2012) 303-311.
[32] X. Wang, M.R. Khan, J.L. Gray, M.A. Alam, M.S. Lundstrom, Design of GaAs solar cells operating close to the Shockley.Queisser limit, IEEE Journal of Photovoltaics, 3 (2013) 737-744.
[33] F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T.N. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, Wafer bonded fourپ]junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency, Progress in Photovoltaics: Research and Applications, 22 (2014) 277-282.
[34] M. Steiner, J. Geisz, I. Garcia, D. Friedman, A. Duda, S. Kurtz, Optical enhancement of the open-circuit voltage in high quality GaAs solar cells, Journal of Applied Physics, 113 (2013) 123109.
[35] Y. Sefidgar, H. Rasooli Saghai, H. Ghatei Khiabani Azar, Enhancing Efficiency of Two-bond Solar Cells Based on GaAs/InGaP, Journal of Optoelectronical Nanostructures, 4 (2019) 83-102.
[36] S. Hubbard, C. Cress, C. Bailey, R. Raffaelle, S. Bailey, D. Wilt, Effect of strain compensation on quantum dot enhanced GaAs solar cells, Applied Physics Letters, 92 (2008) 123512.
[37] P. Krogstrup, H.I. Jorgensen, M. Heiss, O. Demichel, J.V. Holm, M. Aagesen, J. Nygard, A.F. i Morral, Single-nanowire solar cells beyond the Shockley.Queisser limit, Nature Photonics, 7 (2013) 306.
[38] L. Wen, Z. Zhao, X. Li, Y. Shen, H. Guo, Y. Wang, Theoretical analysis and modeling of light trapping in high efficicency GaAs nanowire array solar cells, Applied Physics Letters, 99 (2011) 143116.
[39] I. Aberg, G. Vescovi, D. Asoli, U. Naseem, J.P. Gilboy, C. Sundvall, A. Dahlgren, K.E. Svensson, N. Anttu, M.T. Bjork, A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun, IEEE Journal of photovoltaics, 6 (2015) 185-190.
[40] J. Grandidier, D.M. Callahan, J.N. Munday, H.A. Atwater, Gallium arsenide solar cell absorption enhancement using whispering gallery modes of dielectric nanospheres, IEEE Journal of Photovoltaics, 2 (2012) 123-128.
108 * Journal of Optoelectronical Nanostructures Autumn 2020 / Vol. 5, No. 4
[41] W. Liu, X. Wang, Y. Li, Z. Geng, F. Yang, J. Li, Surface plasmon enhanced GaAs thin film solar cells, Solar Energy Materials and Solar Cells, 95 (2011) 693-698.
[42] K. Nakayama, K. Tanabe, H.A. Atwater, Plasmonic nanoparticle enhanced light absorption in GaAs solar cells, Applied Physics Letters, 93 (2008) 121904.
[43] D. Liang, Y. Kang, Y. Huo, Y. Chen, Y. Cui, J.S. Harris, High-efficiency nanostructured window GaAs solar cells, Nano letters, 13 (2013) 4850-4856.
[44] W. Jie, F. Zheng, J. Hao, Graphene/gallium arsenide-based Schottky junction solar cells, Applied physics letters, 103 (2013) 233111.
[45] K.J. Singh, T.J. Singh, D. Chettri, S. kumar Sarkar, Heterogeneous carbon nano-tube window layer with higher sheet resistance improve the solar cell performance, IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2017, pp. 012023.
[46] K.J. Singh, T.J. Singh, D. Chettri, S.K. Sarkar, A thin layer of Carbon Nano Tube (CNT) as semi-transparent charge collector that improve the performance of the GaAs Solar Cell, Optik, 135 (2017) 256-270.
[47] V. Fallahi, M. Seifouri, Novel structure of optical add/drop filters and multi-channel filter based on photonic crystal for using in optical telecommunication devices, Journal of Optoelectronical Nanostructures, 4 (2019) 53-68.
[48] S.N. Jafari, A. Ghadimi, S. Rouhi, Improving the efficiency of GaAs solar cells using a double semi-transparent carbon nanotubes thin layer, The European Physical Journal Applied Physics, 88 (2019) 20401.
[49] M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohlپ]Ebinger, A.W. Hoپ]Baillie, Solar cell efficiency tables (version 52), Progress in Photovoltaics: Research and Applications, 26 (2018) 427-436.
[50] V. Souza, S. Husmann, E. Neiva, F. Lisboa, L. Lopes, R. Salvatierra, A. Zarbin, Flexible, transparent and thin films of carbon nanomaterials as electrodes for electrochemical applications, Electrochimica Acta, 197 (2016) 200-209.
Strained Carbon Nanotube (SCNT) Thin Layer Effect on GaAs Solar Cells Efficiency * 109
[51] D.Q. Zheng, Z. Zhao, R. Huang, J. Nie, L. Li, Y. Zhang, High-performance piezo-phototronic solar cell based on two-dimensional materials, Nano Energy, 32 (2017) 448-453.
[52] Y. Song, K. Choi, D.-H. Jun, J. Oh, Nanostructured GaAs solar cells via metal-assisted chemical etching of emitter layers, Optics express, 25 (2017) 23862-23872.
[53] R. Tatavarti, G. Hillier, A. Dzankovic, G. Martin, F. Tuminello, R. Navaratnarajah, G. Du, D. Vu, N. Pan, Lightweight, low cost GaAs solar cells on 4 پچepitaxial liftoff (ELO) wafers, 2008 33rd IEEE Photovoltaic Specialists Conference, IEEE, 2008, pp. 1-4.
[54] F.-L. Wu, S.-L. Ou, R.-H. Horng, Y.-C. Kao, Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications, Solar Energy Materials and Solar Cells, 122 (2014) 233-240.
[55] K. Lee, J.D. Zimmerman, T.W. Hughes, S.R. Forrest, Nonپ]destructive wafer recycling for lowپ]cost thinپ]film flexible optoelectronics, Advanced Functional Materials, 24 (2014) 4284-4291.
[56] S. Moon, K. Kim, Y. Kim, J. Heo, J. Lee, Highly efficient single-junction GaAs thin-film solar cell on flexible substrate, Scientific reports, 6 (2016) 30107.