اثرات ضد باکتریایی مارگاتوکسین بر جدایه های بالینی اسینتوباکتر بومانی مقاوم به سیپروفلوکساسین
الموضوعات : Biotechnological Journal of Environmental Microorganismsسحر پور اصغر 1 , نجمه رنجی 2 , لیلا اسدپور 3 , مهدی شهریاری نور 4
1 - گروه زیست شناسی ، دانشکده علوم پایه، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
2 - گروه زیست شناسی ، دانشکده علوم پایه، واحد رشت ، دانشگاه آزاد اسلامی ، رشت ، ایران
3 - گروه زیست شناسی ، دانشکده علوم پایه، واحد رشت، دانشگاه آزاد اسلامی ، رشت ، ایران
4 - گروه زیست شناسی، دانشکده علوم پایه، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
الکلمات المفتاحية: اسینتوباکتر بومانی, سیپروفلوکساسین , MgTX , اثر سینرژیک,
ملخص المقالة :
چکیده:
مقدمه: اسینتوباکتر بومانی، یک پاتوژن گرم منفی، به عنوان یک پاتوژن فرصت طلب مرتبط با مراقبت های بهداشتی شناخته می شود. در این مطالعه، خواص ضد باکتریایی مارگاتوکسین (MgTX) در شرایط آزمایشگاهی بر روی جدایههای بالینی مورد بررسی قرار گرفت.
روشها : پروفایل مقاومت دارویی از پنج آنتی بیوتیک: پیپراسیلین (100 میکروگرم)، ایمی پنم (10 میکروگرم)، سفتازیدیم (30 میکروگرم)، آمیکاسین (30 میکروگرم)، و سیپروفلوکساسین (5 میکروگرم) به روش انتشار از دیسک (Kirby-Bauer) در 20 جدایه بالینی مورد ارزیابی قرار گرفت. تشکیل بیوفیلم با استفاده از روش میکروتیتر پلیت ارزیابی شد. اثر سینرژیک MgTX در ترکیب با سیپروفلوکساسین مرود ارزیابی قرار گرفت.
یافته ها: نتایج ما نشان داد که مقاومت به همه آنتی بیوتیکها ≥90% بود. همه جدایه ها توان تشکیل بیوفیلم (متوسط تا قوی) را داتشند. روش چکر بورد، اثر سینرژیک بین از MgTX و سیپروفلوکساسین را تایید کرد.
نتیجه گیری: به نظر می رسد MgTX با خواص ضد باکتریایی بتواند در استراتژی های درمانی در آینده علیه جدایههای مقاوم به آنتی بیوتیک مورد استفاده قرار گیرد
کلیدواژه ها: اسینتوباکتر بومانی، سیپروفلوکساسین ، MgTX ، اثر هم افزایی
Reference
Ali, M. K., Li, X., Tang, Q., Liu, X., Chen, F., Xiao, J., . . . He, J. (2017). Regulation of inducible potassium transporter KdpFABC by the KdpD/KdpE two-component system in Mycobacterium smegmatis. Frontiers in microbiology, 8, 570.
Cain, A. K., & Hamidian, M. (2023). Portrait of a killer: Uncovering resistance mechanisms and global spread of Acinetobacter baumannii. PLoS Pathogens, 19(8), e1011520.
Casper, G. S. (1985). Prey capture and stinging behavior in the emperor scorpion, Pandinus imperator (Koch)(Scorpiones, Scorpionidae). Journal of Arachnology, 277-283.
Chen, X., Liu, M., Zhang, P., Leung, S. S. Y., & Xia, J. (2021). Membrane-permeable antibacterial enzyme against multidrug-resistant Acinetobacter baumannii. ACS Infectious Diseases, 7(8), 2192-2204.
Dai, L., Corzo, G., Naoki, H., Andriantsiferana, M., & Nakajima, T. (2002). Purification, structure–function analysis, and molecular characterization of novel linear peptides from scorpion Opisthacanthus madagascariensis. Biochemical and biophysical research communications, 293(5), 1514-1522.
de Oliveira, A. N., Soares, A. M., & Da Silva, S. L. (2023). Why to Study Peptides from Venomous and Poisonous Animals? International Journal of Peptide Research and Therapeutics, 29(5), 76.
Garcia-Calvo, M., Leonard, R., Novick, J., Stevens, S., Schmalhofer, W., Kaczorowski, G., & Garcia, M. (1993). Purification, characterization, and biosynthesis of margatoxin, a component of Centruroides margaritatus venom that selectively inhibits voltage-dependent potassium channels. Journal of Biological Chemistry, 268(25), 18866-18874.
Huang, M., Zhuang, H., Zhao, J., Wang, J., Yan, W., & Zhang, J. (2020). Differences in cellular damage induced by dielectric barrier discharge plasma between Salmonella Typhimurium and Staphylococcus aureus. Bioelectrochemistry, 132, 107445.
JAVED, M., HUSSAIN, S., KHAN, M. A., TAJAMMAL, A., FATIMA, H., AMJAD, M., . . . YAQOOB, M. (2022). Potential of Scorpion Venom for the treatment of various diseases. International Journal of Chemistry Research, 1-9.
Kyriakidis, I., Vasileiou, E., Pana, Z. D., & Tragiannidis, A. (2021). Acinetobacter baumannii antibiotic resistance mechanisms. Pathogens, 10(3), 373.
Lari, A. R., Ardebili, A., & Hashemi, A. (2018). AdeR-AdeS mutations & overexpression of the AdeABC efflux system in ciprofloxacin-resistant Acinetobacter baumannii clinical isolates. The Indian journal of medical research, 147(4), 413.
Leão, P. V. S., Ferreira, A. L. d. S., Oliveira, F. A. d. A., Mesquita, A. B. d. S., Lima-Net, J. d. S., Gutierrez, S. J. C., . . . Barreto, H. M. (2023). Riparin-B as a Potential Inhibitor of AdeABC Efflux System from Acinetobacter baumannii. Evidence-Based Complementary and Alternative Medicine, 2023.
Leite, G. C., Oliveira, M. S., Perdigao-Neto, L. V., Rocha, C. K. D., Guimaraes, T., Rizek, C., . . . Costa, S. F. (2016). Antimicrobial combinations against pan-resistant Acinetobacter baumannii isolates with different resistance mechanisms. PloS one, 11(3), e0151270.
Li, Z., Yuan, Y., Li, S., Deng, B., & Wang, Y. (2020). Antibacterial activity of a scorpion-derived peptide and its derivatives in vitro and in vivo. Toxicon, 186, 35-41.
MA, W. (2006). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard. Clsi (Nccls), 26, M7-A7.
Martínez-Trejo, A., Ruiz-Ruiz, J. M., Gonzalez-Avila, L. U., Saldaña-Padilla, A., Hernández-Cortez, C., Loyola-Cruz, M. A., . . . Castro-Escarpulli, G. (2022). Evasion of Antimicrobial Activity in Acinetobacter baumannii by Target Site Modifications: An Effective Resistance Mechanism. International Journal of Molecular Sciences, 23(12), 6582.
Mendoza-Tobar, L. L., Clement, H., Arenas, I., Guerrero-Vargas, J. A., Hernandez-Orihuela, L., Sepulveda-Arias, J. C., & Corzo, G. Antimicrobial, Toxicological, and Antigenic Characteristics of Three Scorpion Venoms from Colombia: Centruroides Margaritatus, Tityus Pachyurus And Tityus N. Sp. Aff. Metuendus. Sp. Aff. Metuendus.
Mohsenzadeh, A., Fazel, A., Bavari, S., Borji, S., Pourasghar, S., Azimi, T., & Sabati, H. (2021). Detecting of biofilm formation in the clinical isolates of Pseudomonas aeruginosa and Escherichia coli: an evaluation of different screening methods. Journal of Current Biomedical Reports, 2(2), 56-61.
Naseem, M. U., Tajti, G., Gaspar, A., Szanto, T. G., Borrego, J., & Panyi, G. (2021). Optimization of Pichia pastoris expression system for high-level production of margatoxin. Frontiers in Pharmacology, 12, 733610.
Pashmforoosh, N., & Baradaran, M. (2023). Peptides with Diverse Functions from Scorpion Venom: A Great Opportunity for the Treatment of a Wide Variety of Diseases. Iranian biomedical journal, 27(2-3), 84.
Pfalzgraff, A., Brandenburg, K., & Weindl, G. (2018). Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Frontiers in pharmacology, 9, 281.
Runci, F., Bonchi, C., Frangipani, E., Visaggio, D., & Visca, P. (2017). Acinetobacter baumannii biofilm formation in human serum and disruption by gallium. Antimicrobial agents and chemotherapy, 61(1), 10.1128/aac. 01563-01516.
Samir, R., Hussein, S. H., Elhosseiny, N. M., Khattab, M. S., Shawky, A. E., & Attia, A. S. (2016). Adaptation to potassium-limitation is essential for Acinetobacter baumannii pneumonia pathogenesis. The Journal of Infectious Diseases, 214(12), 2006-2013.
Stautz, J., Hellmich, Y., Fuss, M. F., Silberberg, J. M., Devlin, J. R., Stockbridge, R. B., & Hänelt, I. (2021). Molecular mechanisms for bacterial potassium homeostasis. Journal of molecular biology, 433(16), 166968.
Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., . . . Carmeli, Y. (2018). Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet infectious diseases, 18(3), 318-327.
Usmani, S. S., Agrawal, P., Sehgal, M., Patel, P. K., & Raghava, G. P. (2019). ImmunoSPdb: an archive of immunosuppressive peptides. Database, 2019, baz012.
Vojnits, K., Mohseni, M., Parvinzadeh Gashti, M., Nadaraja, A. V., Karimianghadim, R., Crowther, B., . . . Pakpour, S. (2024). Advancing Antimicrobial Textiles: A Comprehensive Study on Combating ESKAPE Pathogens and Ensuring User Safety. Materials, 17(2), 383.
Zeng, X.-C., Wang, S.-X., Zhu, Y., Zhu, S.-Y., & Li, W.-X. (2004). Identification and functional characterization of novel scorpion venom peptides with no disulfide bridge from Buthus martensii Karsch. Peptides, 25(2), 143-150.
Zhen, J.-B., Yi, J.-J., Liu, B.-X., Liu, Y.-J., Bu, X.-Y., Wu, X.-J., & Tang, D. (2023). Ciprofloxacin peptide-based nanoparticles confer antimicrobial efficacy against multidrug-resistant bacteria. New Journal of Chemistry, 47(48), 22377-22387.