تثبيت داروي دوکسوروبيسين بر بستر نانو سيستم گرافن اکسايد و مطالعه شبيه سازي رايانه اي (In-Silico) بر آنزيم توپوايزومراز II
الموضوعات : فصلنامه علمی - پژوهشی مواد نوینصدیقه پرگاله بروجني 1 , نورالدین گودرزیان 2 , ندا حسن زاده 3 , محمد کاظم محمدی 4
1 - گروه شيمي ، واحد علوم و تحقيقات خوزستان، دانشگاه آزاد اسلامي، اهواز، ايران
2 - گروه شيمي ، واحد شيراز، دانشگاه آزاد اسلامي، شيراز، ايران
3 - گروه شيمي ، واحد علوم و تحقيقات خوزستان، دانشگاه آزاد اسلامي، اهواز، ايران
4 - گروه شیمی، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
الکلمات المفتاحية: دوکسوروبيسين, گرافن اکسايد, آنزيم توپوايزومراز 2, رهايش, نانو سيستم,
ملخص المقالة :
نتيجه گيري: بر طبق داده هاي طيف XRD، در GO پيک قوي مشاهده شد، که مربوط به فاصله بين لايهاي (d-spacing) و نشاندهنده ساختار لايهاي و وجود گروههاي اکسيژن در سطح GO بود. از سوي ديگر در طيف XRD-rGO نيز شاهد پيک در حدود ۲۶-۲۷ درجه بوديم که بيانگر کاهش فاصله بين لايهاي (d-spacing) مي باشد که به دليل حذف گروههاي اکسيژن و افزايش يکنواختي ساختار است. در الگوي پراش rGO شاهد طيفي سادهتر و يکنواختتر بوديم که نشاندهنده ساختار بلوري بهبود يافته و کاهش نواقص سيستمي بود. با توجه به نتايج مطلوب داد هاي دستگاهي و مطالعه درون رايانه اي بر روي آنزيم توپوايزومراز ۲ و اهميت بالاي زيستسازگاري حاملهاي دارويي، ارجحيت داروي تثبيت شده دوکسوروبيسين بر بستر نانو سيستم گرافن اکسايد، نسبت به داروي اوليه مشهود مي باشد و ترکيبات اخير ميتوانند به عنوان کانديداي مناسبي جهت بهبود هر چه بيشتر بيماران سرطاني و کنترل بيماري آنها استفاده گردند.
1-Yadav, Y. S., Vishwakarma, A. K., Yadav, R. K., et al. "Targeted Cancer Therapy." Res. Reflect. (2017) 1(1): 11-17.
2-Dietel, M., Sers, C. "Personalized medicine and development of targeted therapies: The upcoming challenge for diagnostic molecular pathology. A review." Virchows Arch. (2006) 448(6): 744-755.
3-Widakowich, C., et al. "Review: Side effects of approved molecular targeted therapies in solid cancers." Oncologist. (2007) 12(12): 1443-1455.
4-Citri, A., Yarden, Y. "EGF-ERBB signalling: Towards the systems level." Nat. Rev. Mol. Cell Biol. (2006) 7: 505-516.
5-Liang, T., Xing, Z., Jiang, L., et al. "Tailoring nanoparticles for targeted drug delivery: From organ to subcellular level." Mini-Rev. (2021) DOI: 10.1002/VIW.20200131.
6-Li, Y., Dong, H., Li, Y., Shi D. Graphene-based nanovehicles for photodynamic medical therapy. Int J Nanomedicine. (2015) 27:10:2451-9.
7-Siegel, R. L., et al. Cancer statistics, 2015. CA: A Cancer Journal for Clinicians, 65(1), 5-29.
8-Ma, N., Liu, J., He, W., et al. "Folic acid-grafted bovine serum albumin decorated graphene oxide: an efficient drug carrier for targeted cancer therapy." J. Colloid Interface Sci. (2017) 490: 598.
9-Liang, X., Gao, C., Cui, L., et al. " Self-Assembly of an Amphiphilic Janus Camptothecin–Floxuridine Conjugate into Liposome-Like Nanocapsules for More Efficacious Combination Chemotherapy in Cancer." Adv. Mater. (2017) 29: 1703135.
10-Liu, L., Ma, Q., Cao, J., et al. "Recent progress of graphene oxide-based multifunctional nanomaterials for cancer treatment." Cancer Nanotechnol. (2021) 12: 18.
11-Balcioglu, M., Rana, M., Yigit, M. V. "Doxorubicin loading on graphene oxide, iron oxide and gold nanoparticle hybrid." DOI: 10.1039/C3TB20992J (2013)
12-Sharifi Saqezi, A., Kermanian, M., Ramazani, A., & Sadighian, S. "Synthesis of Graphene Oxide/Iron Oxide/Au Nanocomposite for Quercetin Delivery." J. Inorg. Organomet. Polym. Mater. 32: 1541–1550. (2022).
13-Moghadam, N.B., Avatefi, M., Karimi, M., & Mahmoudifard, M. "Graphene family in cancer therapy: recent progress in cancer gene/drug delivery applications." J. Ind. Environ. Biotechnol. (2023) 14: 111-122.
14-Jabbar, A., Yasin, G., Khan, W. Q., et al. "Electrochemical deposition of nickel graphene composite coatings: effect of deposition temperature on its surface morphology and corrosion resistance." RSC Adv. (2017) 7: 31100.
15-Song, S., Shen, H., Wang, Y., et al. " Biomedical application of graphene: From drug delivery, tumor therapy, to theranostics" Colloids Surf. B Biointerfaces. (2020) 185: 110596.
16-Yu, W., Sisi, L., Haiyan, Y., et al.. " Progress in the functional modification of graphene/graphene oxide: a review" RSC Adv. (2020) 10: 15328.
17-Westman, E. L., Canova, M. J., Radhi, I. J., et al. "" Chem. Biol. (2012) 26: 1255.
18-Zhao, X., Wei, Z., Zhao, Z., et al. " Design and Development of Graphene Oxide Nanoparticle/Chitosan Hybrids Showing pH-Sensitive Surface Charge-Reversible Ability for Efficient Intracellular Doxorubicin Delivery" ACS Appl. Mater. Interfaces. (2018) 10: 6608.
19-Kanwal, U., Bukhari, N. I., Rana, N. F., et al. "" Int. J. Nanomed. (2018) 14(1): 1.
20-Hummers, W. S., & Offeman, R. E. "Preparation of Graphite Oxide." JACS. (1958) 80(6), 1339-1339. DOI: 10.1021/ja01539a017.
21-Garje Channabasappa, M. K., Jalageri, M. "Synthesis and characterization of graphene oxide by modified hummer method." (2020) DOI: 10.1063/5.0003864.
22-Yang, H., Villani, R. M., Wang, H., Simpson, M. J., Roberts, M. S., Tang, M., & Liang, X. The role of cellular reactive oxygen species in cancer chemotherapy. J. Exp. Clin. Cancer Res. (2018) 37(1): 10. doi:10.1186/s13046-018-0909-x.
23-Sharma, H., & Mondal, S. Functionalized Graphene Oxide for Chemotherapeutic Drug Delivery and Cancer Treatment: A Promising Material in Nanomedicine. International Journal of Molecular Sciences, 21(17), 6280 (2020). DOI: 10.3390/ijms21176280.
24-Nurunnabi, M., Parvez, K., Nafiujjaman, M., Revuri, V., Khand, H. A., Feng, X., & Lee, Y. K. "Bioapplication of graphene oxide derivatives: Drug/gene delivery, imaging, polymeric modification, toxicology, therapeutics and challenges." Theranostics (2015) 5(3): 312-344.
25https://pubs.rsc.org/en/content/articlelanding/2023/cp/d3cp01073b
26-Selwa, A., et al. "In silico self-assembly of nanoparticles with applications in drug delivery." In Advances in Nanoparticles and Nanomaterials (2017) pp. 1-20
27-Feng, Y. & Huang, J. "Using simulation to improve drug-delivery effectiveness." Pharmaceutical Technology (2020) 35(11), 1-6.
28-Yang, F. et al. "Nanoparticle-based drug delivery systems for the treatment of cardiovascular diseases." Front. Cardiovasc. Med. (2022) 9: 1062538.
29-Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A & Tour, J. M.. Improved synthesis of graphene oxide. ACS Nano, (2010) 4(8): 4806-4814.
30-Sieradzka, M., et al. "Graphene Oxide: A Comparison of Reduction Methods." Nanomaterials, (2020) 10(7): 1244
31-Ashrafizadeh, M., Saebfar, H., Gholami, M. H., Hushmandi, K., Zabolian, A., et al. "Doxorubicin-loaded graphene oxide nanocomposites in cancer medicine: stimuli-responsive carriers, co-delivery and suppressing resistance." Expert Opin. Drug Deliv. (2022) 19(4): 355-382. doi: 10.1080/17425247.2022.2041598.
32-Yang, X., Zhang, X., Liu, Z., et al. "High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide." J. Phys. Chem. C. (2008) 112(45): 17554-17558.
33-SreeHarsha, N., Maheshwari, R., Al-Dhubiab, B., et al. "Graphene-based hybrid nanoparticle of doxorubicin for cancer chemotherapy." Int. J. Nanomed. (2019) 14: 7419.
34-Ma, W., Yang, H., Hu, Y., et al. "Fabrication of PEGylated porphyrin/reduced graphene oxide/doxorubicin nanoplatform for tumor combination therapy." Polym. Int. (2021) 70(9): 1413-1420.
35-Maseko, R. B., & Aderibigbe, B. A. Doxorubicin-Based Hybrid Compounds as Potential Anticancer Agents: A Review. Molecules (2021) 26(3), 712.
36-Minotti, G., Menna, P., Salvatorelli, E., Cairo, G., & Gianni, L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev. (2004) 56(2), 185-229.
37-Jabbar, A., Yasin, G., Khan, W. Q., et al. "Electrochemical deposition of nickel graphene composite coatings: Effect of deposition temperature on its surface morphology and corrosion resistance." RSC Adv. (2017) 7(49):31100-31109.
38-Barik, S. The uniqueness of tryptophan in biology: Properties, metabolism, interactions, and localization in proteins. Int. J. Mol. Sci. (2020) 21:(22), 8776.
39-Li, X., Wang, X., Zhang, L., Lee, S., & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science. (2008) 319:(5867), 1229-1232.
40-Wang, X., Ouyang, Y., Li, X., Wang, H., Guo, J., & Dai, HRoom-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Physical Review Letters(PRL). (2009) 100:(20), 206803.
41. Kamath, V., Thomas, A. Chitosan nanoparticles as a promising tool in nanomedicine with particular emphasis on oncological treatment. Cancer Cell Int. (2021)
42-Fong, Y. T., Chen, C.-H., Chen, J.-P. Intratumoral delivery of doxorubicin on folate-conjugated graphene oxide by in-situ forming thermo-sensitive hydrogel for breast cancer therapy. Nanomaterials. (2017).
43-Rahdar, A., et al. Copolymer/graphene oxide nanocomposites as potential anticancer agents. Polymer Bulletin. (2020).