New estimates for the Berezin number and Berezin norm
الموضوعات :S. Nourbakhsh 1 , M. Hassani 2 , M. E. Omidvar 3 , H. R. Moradi 4
1 - Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
2 - Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
3 - Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
4 - Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
الکلمات المفتاحية: Berezin number, Berezin norm, inner product, Cartesian decomposition,
ملخص المقالة :
This paper intends to establish several inequalities employing the Cartesian decomposition of the operator. We used the results to determine the Berezin number inequalities. Our results extend and improve some earlier inequalities.
[1] M. Al-Dolat, I. Jaradat, B. Al-Husban, A novel numerical radius upper bounds for 2 × 2 operator matrices, Linear Multilinear Algebra. 70 (6) (2022), 1173-1184.
[2] M. Bakherad, Some Berezin number inequalities for operator matrices, Czechoslovak Math. J. 68 (2018), 997-1009.
[3] M. Bakherad, M. T. Karaev, Berezin number inequalities for operators, Concr. Oper. 6 (2019), 33-43.
[4] F. A. Berezin, Covariant and contravariant symbols for operators, Math USSR-Izv. 6 (1972), 1117-1151.
[5] F. A. Berezin, Quantizations, Math USSR-Izv. 8 (1974), 1109-1163.
[6] R. Bhatia, F. Kittaneh, On the singular values of a product of operators, SIAM J. Matrix Anal. Appl. 11 (1990), 272-277.
[7] P. Bhunia, K. Paul, New upper bounds for the numerical radius of Hilbert space operators, Bull. Sci. Math. (2021), 167:102959.
[8] P. Bhunia, K. Paul, Refinement of numerical radius inequalities of complex Hilbert space operators, Acta Sci. Math. 89 (2023), 427-436.
[9] P. Bhunia, K. Paul, A. Sen, Inequalities involving Berezin norm and Berezin number, Complex Anal. Oper. Theory. (2023), 17:7.
[10] M. L. Buzano, Generalizzazione della diseguaglianza di Cauchy–Schwarz’, Rend. Sem. Mat. Univ. Politech. Torino. 31 (1971/73), 405-409.
[11] S. S. Dragomir, Power inequalities for the numerical radius of a product of two operators in Hilbert spaces, Sarajevo J. Math. 5 (18) (2009), 269-278.
[12] S. S. Dragomir, Some inequalities for the Euclidean operator radius of two operators in Hilbert spaces, Linear Algebra Appl. 419 (2006), 256-264.
[13] T. Furuta, Invitation to Linear Operators, Taylor and Francis, London, 2001.
[14] I. H. Gümü¸ s, H. R. Moradi, M. Sababheh, On positive and positive partial transpose matrices, Electron. J. Linear Algebra. 38 (2022), 792-802.
[15] P . R. Halmos, A Hilbert Space, Problem Book, Springer, New York, 1982.
[16] M. Hassani, M. E. Omidvar, H. R. Moradi, New estimates on numerical radius and operator norm of Hilbert space operators, Tokyo J. Math. 44 (2) (2021), 439-449.
[17] O. Herzallah, F. Kittaneh, and K. Shebrawi, Numerical radius inequalities for certain 2×2 operator matrices, Integr. Equ. Oper. Theory. 71 (2011), 129-147.
[18] Z. Heydarbeygi, M. Sababheh, and H. R. Moradi, A convex treatment of numerical radius inequalities. Czech Math J. 72 (2022), 601-614.
[19] M. T. Karaev, Berezin symbol and invertibility of operators on the functional Hilbert spaces, J Funct Anal. 238 (2006), 181-192.
[20] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math. 168 (1) (2005), 73-80.
[21] F. Kittaneh, H. R. Moradi, M. Sababheh, Sharper bounds for the numerical radius, Linear Multilinear Algebra. (2023), 1-11. https://doi.org/10.1080/03081087.2023.2177248
[22] F. P. Najafabadi, H. R. Moradi, Advanced refinements of numerical radius inequalities, Inter. J. Math. Model. Comput. 11 (4) (2021), 1-10.
[23] S. Tafazoli, H. R. Moradi, S. Furuichi, P. Harikrishnan, Further inequalities for the numerical radius of Hilbert space operators, J. Math. Inequal. 13 (4) (2019), 955-967.
[24] T. Yamazaki, On upper and lower bounds of the numerical radius and an equality condition, Studia Math. 178 (2007), 83-89.