مروری بر تنظیم ولتاژ در شبکههای توزیع فشار ضعیف از طریق کنترل اینورتر سیستمهای فتوولتاییک
الموضوعات :محمد جواد رمضان 1 , سید فریبرز زارعی 2 , محمدامین قاسمی 3 , احسان حیدریان فروشانی 4
1 - دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی قم، قم، ایران
2 - دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی قم، قم، ایران
3 - دانشکده مهندسی برق، دانشگاه بو علی سینای همدان، همدان، ایران
4 - دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی قم، قم، ایران
الکلمات المفتاحية: شبکه توزیع, تنظیم ولتاژ, کنترل توان راکتیو, هماهنگی کنترلی, اینورتر پنل فتوولتاییک,
ملخص المقالة :
مشارکت بالای پنلهای فتوولتاییک در شبکههای توزیع فشار ضعیف، در برخی اوقات (مخصوصا هنگام ظهر، که تولید توان پیک، توسط پنلها صورت گرفته و سطح تقاضای بارکم است) میتواند باعث ایجاد مشکلاتی در شبکه توزیع گردد، که از جمله مهمترین این مشکلات میتوان به عکس شدن جهت توان و به وجود آمدن اضافه ولتاژ در شبکه توزیع اشاره کرد. بروز چنین مشکلات میتواند باعث کم شدن سطح مشارکت پنلهای فتوولتاییک در شبکههای توزیع گردد، که با اصل بهرهوری و استفاده حداکثری از انرژیهای تجدیدپذیر منافات دارد، لذا به منظور افزودن سهم مشارکت پنلها در این گونه موارد، از روشهای مختلفی جهت کاستن اضافه ولتاژ به وجود آمده استفاده میگردد، که در این مقاله علاوه بر مروری بر روی آنها، به بررسی قابلیتهای مختلف کنترلی اینورتر هوشمند پنلها پرداخته میشود. در ادامه به بررسی مزایا و معایب هر یک از این روشها و چگونگی ترکیب آنها به منظور افزایش بازدهی پرداخته و چند نمونه ترکیب پر کاربرد با بازدهی بالاتر، به همراه سناریوهای شارژ و دشارژ سیستمهای ذخیره ساز انرژی مورد استفاده در این موارد نیز به طور خلاصه مورد بررسی قرار گرفته است.
[1] S. Europe, "Global market outlook for solar power 2022–2026," Solar Power Europe: Brussels, Belgium, 2022.
[2] P. Kanakasabapathy and K. Suresh, "A Review of Voltage Stability Issues in Distribution System Influenced By High PV Penetration and Its Mitigation Techniques," International Journal of Renewable Energy Research (IJRER), vol. 13, no. 1, pp. 236-244, 2023, doi: 10.20508/ijrer.v13i1.13388.g8678
[3] P. Chaudhary and M. Rizwan, "Voltage regulation mitigation techniques in distribution system with high PV penetration: A review," Renewable and Sustainable Energy Reviews, vol. 82, pp. 3279-3287, 2018, doi: 10.1016/j.rser.2017.10.017.
[4] M. Karimi, H. Mokhlis, K. Naidu, S. Uddin, and A. A. Bakar, "Photovoltaic penetration issues and impacts in distribution network–A review," Renewable and Sustainable Energy Reviews, vol. 53, pp. 594-605, 2016, doi: 10.1016/j.rser.2015.08.042.
[5] S. Shivashankar, S. Mekhilef, H. Mokhlis, and M. Karimi, "Mitigating methods of power fluctuation of photovoltaic (PV) sources–A review," Renewable and Sustainable Energy Reviews, vol. 59, pp. 1170-1184, 2016, doi: 10.1016/j.rser.2016.01.059.
[6] R. Tonkoski, D. Turcotte, and T. H. El-Fouly, "Impact of high PV penetration on voltage profiles in residential neighborhoods," IEEE Transactions on Sustainable Energy, vol. 3, no. 3, pp. 518-527, 2012, doi: 10.1109/TSTE.2012.2191425.
[7] D. Almeida, J. Pasupuleti, J. Ekanayake, and E. Karunarathne, "Mitigation of overvoltage due to high penetration of solar photovoltaics using smart inverters volt/var control," Indones. J. Electr. Eng. Comput. Sci, vol. 19, no. 3, pp. 1259-1266, 2020, doi: 10.11591/ijeecs.
[8] S. Mikulić and B. Ćućić, "Voltage regulated distribution transformer with new vacuum OLTC," in The 12th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (MEDPOWER 2020), 2020, vol. 2020, pp. 225-230: IET, doi: 10.1049/icp.2021.1207.
[9] G. Mauri et al., "Control and automation systems for Electricity Distribution Networks (EDN) of the future". CIGRE (International Council on Large Electric Systems), 2017.
[10] M. N. I. Sarkar, L. G. Meegahapola, and M. Datta, "Reactive power management in renewable rich power grids: A review of grid-codes, renewable generators, support devices, control strategies and optimization algorithms," Ieee Access, vol. 6, pp. 41458-41489, 2018, doi: 10.1109/ACCESS.2018.2838563.
[11] M. E. Baran and F. F. Wu, "Optimal capacitor placement on radial distribution systems," IEEE Transactions on power Delivery, vol. 4, no. 1, pp. 725-734, 1989, doi: 10.1109/61.19265.
[12] J. Ekanayake and M. Jenkins, "A three-level advanced static VAr compensator," IEEE Transactions on Power Delivery, vol. 11, no. 1, pp. 540-545, 1996, doi: 10.1109/61.484140.
[13] M. Emarati, M. Barani, H. Farahmand, J. Aghaei, and P. C. del Granado, "A two-level over-voltage control strategy in distribution networks with high PV penetration," International Journal of Electrical Power & Energy Systems, vol. 130, p. 106763, 2021, doi: 10.1016/j.ijepes.2021.106763.
[14] M. D. Talal Alazemi, and Mohammed Radi, "TSO/DSO Coordination for RES Integration: A Systematic Literature Review," https://www.mdpi.com/journal/energies, 2022, doi: 10.3390/en15197312.
[15] A. Sangwongwanich, Y. Yang, and F. Blaabjerg, "A sensorless power reserve control strategy for two-stage grid-connected PV systems," IEEE Transactions on Power Electronics, vol. 32, no. 11, pp. 8559-8569, 2017, doi: 10.1109/TPEL.2017.2648890.
[16] Q. Peng, A. Sangwongwanich, Y. Yang, and F. Blaabjerg, "Grid-friendly power control for smart photovoltaic systems," Solar Energy, vol. 210, pp. 115-127, 2020, doi: 10.1016/j.solener.2020.05.001.
[17] H. Khan, S. J. Chacko, B. G. Fernandes, and A. Kulkarni, "Reliable and effective ride-through controller operation for smart PV systems connected to LV distribution grid under abnormal voltages," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 3, pp. 2371-2384, 2019, doi: 10.1109/JESTPE.2019.2918620.
[18] M. K. Mishra and V. N. Lal, "An enhanced control strategy to mitigate grid current harmonics and power ripples of grid-tied PV system without PLL under distorted grid voltages," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 4, pp. 4587-4602, 2021, doi: /10.1109/JESTPE.2021.3107869.
[19] D. C. Nagarajan, G. Neelakrishnan, V. Sundarajan, and D. Vinoth, "Simplified Reactive Power Control for Single-Phase Grid-Connected Photovoltaic Inverters," IEEE Transactions on Industrial Electronics, Volume: 61, Issue: 5, May 2014, doi: 10.1109/TIE.2013.2271600.
[20] Y. Yang, H. Wang, and F. Blaabjerg, "Reactive power injection strategies for single-phase photovoltaic systems considering grid requirements," IEEE Transactions on Industry Applications, vol. 50, no. 6, pp. 4065-4076, 2014, doi: 10.1109/TIA.2014.2346692.
[21] Y. Yang, F. Blaabjerg, H. Wang, and M. G. Simões, "Power control flexibilities for grid‐connected multi‐functional photovoltaic inverters," IET Renewable Power Generation, vol. 10, no. 4, pp. 504-513, 2016, doi: 10.1049/iet-rpg.2015.0133.
[22] F. Blaabjerg, Y. Yang, D. Yang, and X. Wang, "Distributed power-generation systems and protection," Proceedings of the IEEE, vol. 105, no. 7, pp. 1311-1331, 2017, doi: 10.1109/JPROC.2017.2696878.
[23] C. Utama, C. Meske, J. Schneider, and C. Ulbrich, "Reactive power control in photovoltaic systems through (explainable) artificial intelligence," Applied Energy, vol. 328, p. 120004, 2022, doi: 10.1016/j.apenergy.2022.120004.
[24] C. Zhang and Y. Xu, "Hierarchically-Coordinated Voltage/VAR Control of Distribution Networks Using PV Inverters," IEEE Transactions on Smart Grid, vol. 11, no. 4, pp. 2942-2953, 2020, doi: 10.1109/TSG.2020.2968394.
[25] Y. Z. Gerdroodbari, R. Razzaghi, and F. Shahnia, "Decentralized control strategy to improve fairness in active power curtailment of PV inverters in low-voltage distribution networks," IEEE Transactions on Sustainable Energy, vol. 12, no. 4, pp. 2282-2292, 2021, doi: 10.1109/TSTE.2021.3088873.
[26] T. T. Mai, A. N. M. Haque, P. P. Vergara, P. H. Nguyen, and G. Pemen, "Adaptive coordination of sequential droop control for PV inverters to mitigate voltage rise in PV-Rich LV distribution networks," Electric Power Systems Research, vol. 192, p. 106931, 2021, doi: 10.1016/j.epsr.2020.106931.
[27] H. Almasalma, S. Claeys, and G. Deconinck, "Peer-to-peer-based integrated grid voltage support function for smart photovoltaic inverters," Applied Energy, vol. 239, pp. 1037-1048, 2019, doi: 10.1016/j.apenergy.2019.01.249.
[28] R. Tonkoski, L. A. Lopes, and T. H. El-Fouly, "Coordinated active power curtailment of grid connected PV inverters for overvoltage prevention," IEEE Transactions on sustainable energy, vol. 2, no. 2, pp. 139-147, 2010, doi: 10.1109/TSTE.2010.2098483.
[29] G. C. Kryonidis, E. O. Kontis, A. I. Chrysochos, C. S. Demoulias, and G. K. Papagiannis, "A coordinated droop control strategy for overvoltage mitigation in active distribution networks," IEEE Transactions on Smart Grid, vol. 9, no. 5, pp. 5260-5270, 2017, doi: 10.1109/TSG.2017.2685686.
[30] J. Jung, A. Onen, R. Arghandeh, and R. P. Broadwater, "Coordinated control of automated devices and photovoltaic generators for voltage rise mitigation in power distribution circuits," Renewable Energy, vol. 66, pp. 532-540, 2014, doi: 10.1016/j.renene.2013.12.039.
[31] M. Katsanevakis, R. A. Stewart, and J. Lu, "Aggregated applications and benefits of energy storage systems with application-specific control methods: A review," Renewable and Sustainable Energy Reviews, vol. 75, pp. 719-741, 2017, doi: 10.1016/j.rser.2016.11.050.
[32] J. Haas et al., "Challenges and trends of energy storage expansion planning for flexibility provision in low-carbon power systems–a review," Renewable and Sustainable Energy Reviews, vol. 80, pp. 603-619, 2017, doi: 10.1016/j.rser.2017.05.201.
[33] S. Tsianikas, J. Zhou, D. P. Birnie III, and D. W. Coit, "Economic trends and comparisons for optimizing grid-outage resilient photovoltaic and battery systems," Applied energy, vol. 256, p. 113892, 2019, doi: 10.1016/j.apenergy.2019.113892.
[34] T. Gush, C.-H. Kim, S. Admasie, J.-S. Kim, and J.-S. Song, "Optimal smart inverter control for PV and BESS to improve PV hosting capacity of distribution networks using slime mould algorithm," IEEE Access, vol. 9, pp. 52164-52176, 2021, doi: 10.1109/ACCESS.2021.3070155.
[35] L. Wang, D. H. Liang, A. F. Crossland, P. C. Taylor, D. Jones, and N. S. Wade, "Coordination of multiple energy storage units in a low-voltage distribution network," IEEE Transactions on Smart Grid, vol. 6, no. 6, pp. 2906-2918, 2015, doi: 10.1109/TSG.2015.2452579.
[36] M. N. Kabir, Y. Mishra, G. Ledwich, Z. Y. Dong, and K. P. Wong, "Coordinated control of grid-connected photovoltaic reactive power and battery energy storage systems to improve the voltage profile of a residential distribution feeder," IEEE Transactions on industrial Informatics, vol. 10, no. 2, pp. 967-977, 2014, doi: 10.1109/TII.2014.2299336.
[37] Y. Wang, K. Tan, X. Y. Peng, and P. L. So, "Coordinated control of distributed energy-storage systems for voltage regulation in distribution networks," IEEE transactions on power delivery, vol. 31, no. 3, pp. 1132-1141, 2015, doi: 10.1109/TPWRD.2015.2462723.
[38] M. J. E. Alam, K. M. Muttaqi, and D. Sutanto, "Mitigation of rapid voltage variations caused by passing clouds in distribution networks with solar PV using energy storage," in 8th International Conference on Electrical and Computer Engineering, 2014, pp. 305-308: IEEE, doi: 10.1109/ICECE.2014.7026821.
[39] M. Beaudin, H. Zareipour, A. Schellenberglabe, and W. Rosehart, "Energy storage for mitigating the variability of renewable electricity sources: An updated review," Energy for sustainable development, vol. 14, no. 4, pp. 302-314, 2010, doi: 10.1016/j.esd.2010.09.007.
[40] W. A. Omran, M. Kazerani, and M. Salama, "Investigation of methods for reduction of power fluctuations generated from large grid-connected photovoltaic systems," IEEE Transactions on Energy Conversion, vol. 26, no. 1, pp. 318-327, 2010, doi: 10.1109/TEC.2010.2062515.
[41] B. Mukhopadhyay and D. Das, "Multi-objective dynamic and static reconfiguration with optimized allocation of PV-DG and battery energy storage system," Renewable and sustainable energy reviews, vol. 124, p. 109777, 2020, doi: 10.1016/j.rser.2020.109777.
[42] A. I. Nousdilis, G. C. Christoforidis, and G. K. Papagiannis, "Active power management in low voltage networks with high photovoltaics penetration based on prosumers’ self-consumption," Applied energy, vol. 229, pp. 614-624, 2018, doi: 10.1016/j.apenergy.2018.08.032.
[43] V. Sharma, M. H. Haque, S. M. Aziz, and T. Kauschke, "Reducing Overvoltage-Induced PV Curtailment Through Reactive Power Support of Battery and Smart PV Inverters," IEEE Access, vol. 12, pp. 123995-124008, 2024, doi: 10.1109/ACCESS.2024.3454313.
[44] T. Sutikno, W. Arsadiando, A. Wangsupphaphol, A. Yudhana, and M. Facta, "A Review of Recent Advances on Hybrid Energy Storage System for Solar Photovoltaics Power Generation," IEEE Access, vol. 10, pp. 42346-42364, 2022, doi: 10.1109/ACCESS.2022.3165798
[45] V. Nikam and V. Kalkhambkar, "A review on control strategies for microgrids with distributed energy resources, energy storage systems, and electric vehicles," International Transactions on Electrical Energy Systems, vol. 31, no. 1, 2020, doi: 10.1002/2050-7038.12607
[46] M. M. Rana, M. Uddin, M. R. Sarkar, G. M. Shafiullah, H. Mo, and M. Atef, "A review on hybrid photovoltaic – Battery energy storage system: Current status, challenges, and future directions," Journal of Energy Storage, vol. 51, p. 104597, 2022, doi: 10.1016/j.est.2022.104597
[47] X. Lin and R. Zamora, "Controls of hybrid energy storage systems in microgrids: Critical review, case study and future trends," Journal of Energy Storage, vol. 47, p. 103884, 2022, doi: 10.1016/j.est.2021.103884
[48] B. Yildiz et al., "Real-world data analysis of distributed PV and battery energy storage system curtailment in low voltage networks," Renewable and Sustainable Energy Reviews, vol. 186, p. 113696, 2023, doi: 10.1016/j.rser.2023.113696
[49] H. Shareef, M. M. Islam, and A. Mohamed, "A review of the stage-of-the-art charging technologies, placement methodologies, and impacts of electric vehicles," Renewable and Sustainable Energy Reviews, vol. 64, pp. 403-420, 2016, doi: 10.1016/j.rser.2016.06.033
[50] H. Aljarash, "OUTLOOK OF ELECTRIC VEHICLE MARKET: PREDICTING EV PRICES USING MACHINE LEARNING TECHNIQUES," in Proceedings of the International Annual Conference of the American Society for Engineering Management., 2022, pp. 1-11: American Society for Engineering Management (ASEM).
[51] T. Lehtola and A. Zahedi, "Solar energy and wind power supply supported by storage technology: A review," Sustainable Energy Technologies and Assessments, vol. 35, pp. 25-31, 2019, doi: 10.1016/j.seta.2019.05.013
[52] J. Ye et al., "Cyber–physical security of powertrain systems in modern electric vehicles: Vulnerabilities, challenges, and future visions," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 4, pp. 4639-4657, 2020, doi: 10.1109/JESTPE.2020.3045667
[53] C. Jiang, R. Torquato, D. Salles, and W. Xu, "Method to assess the power-quality impact of plug-in electric vehicles," IEEE Transactions on Power delivery, vol. 29, no. 2, pp. 958-965, 2013, doi: 10.1109/TPWRD.2013.2283598
[54] K. Clement-Nyns, E. Haesen, and J. Driesen, "The impact of charging plug-in hybrid electric vehicles on a residential distribution grid," IEEE Transactions on power systems, vol. 25, no. 1, pp. 371-380, 2009, doi: 10.1109/TPWRS.2009.2036481
[55] J. M. Foster, G. Trevino, M. Kuss, and M. C. Caramanis, "Plug-in electric vehicle and voltage support for distributed solar: Theory and application," IEEE Systems Journal, vol. 7, no. 4, pp. 881-888, 2012, doi: 10.1109/JSYST.2012.2223534
[56] P. Siano, "Demand response and smart grids—A survey," Renewable and sustainable energy reviews, vol. 30, pp. 461-478, 2014, doi: 10.1016/j.rser.2013.10.022
[57] H. T. Haider, O. H. See, and W. Elmenreich, "A review of residential demand response of smart grid," Renewable and Sustainable Energy Reviews, vol. 59, pp. 166-178, 2016, doi: 10.1016/j.rser.2016.01.016
[58] M. Shafie-khah, P. Siano, J. Aghaei, M. A. Masoum, F. Li, and J. P. Catalão, "Comprehensive review of the recent advances in industrial and commercial DR," IEEE Transactions on Industrial Informatics, vol. 15, no. 7, pp. 3757-3771, 2019, doi: 10.1109/TII.2019.2909276
[59] N. Shaukat et al., "A survey on consumers empowerment, communication technologies, and renewable generation penetration within Smart Grid," Renewable and Sustainable Energy Reviews, vol. 81, pp. 1453-1475, 2018, doi: 10.1016/j.rser.2017.05.208
[60] D. Wang, K. Meng, X. Gao, J. Qiu, L. L. Lai, and Z. Y. Dong, "Coordinated dispatch of virtual energy storage systems in LV grids for voltage regulation," IEEE Transactions on Industrial Informatics, vol. 14, no. 6, pp. 2452-2462, 2017, doi: 10.1109/TII.2017.2769452
[61] K. Baker, A. Bernstein, E. Dall’Anese, and C. Zhao, "Network-cognizant voltage droop control for distribution grids," IEEE Transactions on Power Systems, vol. 33, no. 2, pp. 2098-2108, 2017, doi: 10.1109/TPWRS.2017.2735379
[62] A. Samadi, R. Eriksson, L. Söder, B. G. Rawn, and J. C. Boemer, "Coordinated active power-dependent voltage regulation in distribution grids with PV systems," IEEE Transactions on power delivery, vol. 29, no. 3, pp. 1454-1464, 2014, doi: 10.1109/TPWRD.2014.2298614
[63] J. Flicker and J. Johnson, "Photovoltaic ground fault detection recommendations for array safety and operation," Solar Energy, vol. 140, pp. 34-50, 2016, doi: 10.1016/j.solener.2016.10.017
[64] S. Hashemi and J. Østergaard, "Efficient control of energy storage for increasing the PV hosting capacity of LV grids," IEEE Transactions on Smart Grid, vol. 9, no. 3, pp. 2295-2303, 2016, doi: 10.1109/TSG.2016.2609892
[65] M. N. Kabir, Y. Mishra, G. Ledwich, Z. Xu, and R. Bansal, "Improving voltage profile of residential distribution systems using rooftop PVs and Battery Energy Storage systems," Applied energy, vol. 134, pp. 290-300, 2014, doi: 10.1016/j.apenergy.2014.08.042
[66] A. Kulmala, S. Repo, and B. Bletterie, "Avoiding adverse interactions between transformer tap changer control and local reactive power control of distributed generators," in 2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), 2016, pp. 1-6: IEEE, doi: 10.1109/ISGTEurope.2016.7856315
[67] M. R. Jafari, M. Parniani, and M. H. Ravanji, "Decentralized Control of OLTC and PV Inverters for Voltage Regulation in Radial Distribution Networks With High PV Penetration," IEEE Transactions on Power Delivery, vol. 37, no. 6, pp. 4827-4837, 2022, doi: 10.1109/TPWRD.2022.3160375
[68] A. Ali, K. Mahmoud, and M. Lehtonen, "Maximizing Hosting Capacity of Uncertain Photovoltaics by Coordinated Management of OLTC, VAr Sources and Stochastic EVs," International Journal of Electrical Power & Energy Systems, vol. 127, p. 106627, 2021, doi: 10.1016/j.ijepes.2020.106627
[69] A. Dutta, S. Ganguly, and C. Kumar, "Model predictive control‐based optimal voltage regulation of active distribution networks with OLTC and reactive power capability of PV inverters," IET Generation, Transmission & Distribution, vol. 14, no. 22, pp. 5183-5192, 2020, doi: 10.1049/iet-gtd.2020.0378
[70] T. Gush and C.-H. Kim, "Robust Local Coordination Control of PV Smart Inverters With SVC and OLTC in Active Distribution Networks," IEEE Transactions on Power Delivery, vol. 39, no. 3, pp. 1610-1621, 2024, doi: 10.1109/TPWRD.2024.3374059
[71] F. Spertino, A. Ciocia, A. Mazza, M. Nobile, A. Russo, and G. Chicco, "Voltage control in low voltage grids with independent operation of on-load tap changer and distributed photovoltaic inverters," Electric Power Systems Research, vol. 211, p. 108187, 2022, doi: 10.1016/j.epsr.2022.108187
[72] R. Yan, B. Marais, and T. K. Saha, "Impacts of residential photovoltaic power fluctuation on on-load tap changer operation and a solution using DSTATCOM," Electric Power Systems Research, vol. 111, pp. 185-193, 2014, doi: 10.1016/j.epsr.2014.02.020
[73] Y. P. Agalgaonkar, B. C. Pal, and R. A. Jabr, "Distribution voltage control considering the impact of PV generation on tap changers and autonomous regulators," IEEE Transactions on Power Systems, vol. 29, no. 1, pp. 182-192, 2013, doi: 10.1109/TPWRS.2013.2279721
[74] X. Liu, A. Aichhorn, L. Liu, and H. Li, "Coordinated control of distributed energy storage system with tap changer transformers for voltage rise mitigation under high photovoltaic penetration," IEEE Transactions on Smart Grid, vol. 3, no. 2, pp. 897-906, 2012, doi: 10.1109/TSG.2011.2177501
[75] T. Tewari, A. Mohapatra, and S. Anand, "Coordinated Control of OLTC and Energy Storage for Voltage Regulation in Distribution Network With High PV Penetration," IEEE Transactions on Sustainable Energy, vol. 12, no. 1, pp. 262-272, 2021, doi: 10.1109/TSTE.2020.2991017
[76] H. A. Khan, M. Zuhaib, and M. Rihan, "Voltage fluctuation mitigation with coordinated OLTC and energy storage control in high PV penetrating distribution network," Electric Power Systems Research, vol. 208, p. 107924, 2022, doi: 10.1016/j.epsr.2022.107924
[77] O. Palizban and K. Kauhaniemi, "Hierarchical control structure in microgrids with distributed generation: Island and grid-connected mode," Renewable and Sustainable Energy Reviews, vol. 44, pp. 797-813, 2015, doi: 10.1016/j.rser.2015.01.008
[78] S. Pukhrem, M. Basu, M. F. Conlon, and K. Sunderland, "Enhanced network voltage management techniques under the proliferation of rooftop solar PV installation in low-voltage distribution network," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 2, pp. 681-694, 2016, doi: 10.1109/ JESTPE.2016.2614986
[79] E. Demirok, P. C. Gonzalez, K. H. Frederiksen, D. Sera, P. Rodriguez, and R. Teodorescu, "Local reactive power control methods for overvoltage prevention of distributed solar inverters in low-voltage grids," IEEE Journal of Photovoltaics, vol. 1, no. 2, pp. 174-182, 2011, doi: 10.1109/JPHOTOV.2011.2174821
[80] L. Collins and J. Ward, "Real and reactive power control of distributed PV inverters for overvoltage prevention and increased renewable generation hosting capacity," Renewable Energy, vol. 81, pp. 464-471, 2015, doi: 10.1016/j.renene.2015.03.012
[81] F. Olivier, P. Aristidou, D. Ernst, and T. Van Cutsem, "Active management of low-voltage networks for mitigating overvoltages due to photovoltaic units," IEEE Transactions on Smart Grid, vol. 7, no. 2, pp. 926-936, 2015, doi: 10.1109/TSG.2015.2410171
[82] M. Zeraati, M. E. H. Golshan, and J. M. Guerrero, "Voltage quality improvement in low voltage distribution networks using reactive power capability of single-phase PV inverters," IEEE transactions on smart grid, vol. 10, no. 5, pp. 5057-5065, 2018, doi: 10.1109/TSG.2018.2874381
[83] N. Karthikeyan, J. R. Pillai, B. Bak-Jensen, and J. W. Simpson-Porco, "Predictive control of flexible resources for demand response in active distribution networks," IEEE Transactions on Power Systems, vol. 34, no. 4, pp. 2957-2969, 2019, doi: 10.1109/TPWRS.2019.2898425
[84] H.-G. Yeh, D. F. Gayme, and S. H. Low, "Adaptive VAR control for distribution circuits with photovoltaic generators," IEEE Transactions on Power Systems, vol. 27, no. 3, pp. 1656-1663, 2012, doi: 10.1109/TPWRS.2012.2183151
[85] E. Dall’Anese, S. V. Dhople, and G. B. Giannakis, "Optimal dispatch of photovoltaic inverters in residential distribution systems," IEEE Transactions on Sustainable Energy, vol. 5, no. 2, pp. 487-497, 2014, doi: 10.1109/TSTE.2013.2292828
[86] S. Weckx, C. Gonzalez, and J. Driesen, "Combined central and local active and reactive power control of PV inverters," IEEE Transactions on Sustainable Energy, vol. 5, no. 3, pp. 776-784, 2014, doi: 10.1109/TSTE.2014.2300934
[87] K. Mahmoud and M. Lehtonen, "Three-level control strategy for minimizing voltage deviation and flicker in PV-rich distribution systems," International Journal of Electrical Power & Energy Systems, vol. 120, p. 105997, 2020, doi: 10.1016/j.ijepes.2020.105997
[88] M. Juamperez, G. Yang, and S. B. Kjær, "Voltage regulation in LV grids by coordinated volt-var control strategies," Journal of Modern Power Systems and Clean Energy, vol. 2, no. 4, pp. 319-328, 2014, doi: 10.1007/s40565-014-0072-0