Predicting Hydrogen Uptake in Carbon Nanotubes Using Graph Neural Networks and Molecular Simulations
الموضوعات :
1 - Department of Physics, Materials and Energy Research Center, Dez.C., Islamic Azad University, Dezful, Iran
الکلمات المفتاحية: Hydrogen storage, Single-walled carbon nanotubes (SWCNTs), Grand Canonical Monte Carlo (GCMC), Graph neural networks (GNNs), ,
ملخص المقالة :
Hydrogen storage in carbon nanomaterials remains a critical challenge for clean energy applications. In this work, we develop a machine learning framework to accurately predict hydrogen uptake in single-walled carbon nanotubes (SWCNTs) by combining Grand Canonical Monte Carlo (GCMC) simulations with a graph neural network (GNN). A dataset of 270 configurations spanning diameters from 0.68 to 1.36 nm, temperatures of 77–350 K, and pressures up to 100 bar was generated using classical Lennard-Jones potentials validated against established force fields. The GNN, operating directly on atomic graph representations, achieves excellent predictive performance with a test R² of 0.98 and RMSE below 0.55 mmol/g. Interpretability analysis via attention mapping reveals that the model preferentially weights carbon atoms on the inner nanotube surface, consistent with the physics of nano confinement-driven physisorption. Our simulations confirm an optimal SWCNT diameter of ~0.81 nm for hydrogen storage at 77 K (~3.2 wt%), while ambient-temperature capacities remain below 0.5 wt%, highlighting the intrinsic limitations of pristine nanotubes. This work demonstrates that physics-informed machine learning, trained on modest yet high-fidelity simulation data, can enable rapid, interpretable, and reliable virtual screening of nanomaterials for hydrogen storage.
1. Staffell I, Scamman D, Velazquez Abad A, Balcombe P, Dodds PE, Ekins P, et al. The role of hydrogen and fuel cells in the global energy system. Energy Environ Sci. 2019;12(2):463-91.
2. Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications. Nature. 2001;414(6861):353-8.
3. Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ. Storage of hydrogen in single-walled carbon nanotubes. Nature. 1997;386(6623):377-9.
4. Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science. 1999;286(5442):1127-9.
5. Purewal J, Liu D, Sudik A, Veenstra M, Yang J, Maurer S, et al. Improved hydrogen storage and thermal conductivity in high-density MOF-5 composites. J Phys Chem C. 2012;116(38):20199-212.
6. Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. 2nd ed. San Diego: Academic Press; 2002.
7. Wang Q, Johnson JK. Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores. J Chem Phys. 1999;110(1):577-86.
8. Jagiello J, Thommes M. Comparison of DFT characterization methods for carbon blacks and carbon nanotubes. Carbon. 2004;42(5-6):1227-32.
9. Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE. Neural message passing for quantum chemistry. In: Proceedings of the 34th International Conference on Machine Learning (ICML); 2017. p. 1263-72.
10. Xie T, Grossman JC. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys Rev Lett. 2018;120(14):145301.
11. Chung YG, Haldoupis E, Bucior BJ, Haranczyk M, Lee S, Zhang H, et al. Advances, updates, and analytics for the computation-ready, experimental metal–organic framework database: CoRE MOF 2019. J Chem Eng Data. 2019;64(12):5985-98.
12. Lee S, Kim B, Cho H, Lee H, Lee SY, Cho ES. Computational screening of trillions of metal–organic frameworks for high-performance hydrogen storage. ACS Appl Mater Interfaces. 2021;13(19):23647-54.
13. Li Y, Guo J, Wang B, Zhang X. Graph neural networks for predicting gas adsorption in nanoporous materials. Nat Mach Intell. 2023;5(3):229-40.
14. Kowalczyk P, Gauden PA, Terzyk AP, Kowalczyk P. Optimal pore size for hydrogen storage in carbon nanomaterials at cryogenic temperatures. Carbon. 2020; 168:712-20.
15. Gómez L, Vega LF. Force field benchmarking for hydrogen adsorption in nanoporous carbons. J Chem Theory Comput. 2021;17(5):3125-34.
16. Purewal J, Liu D, Yang J, Sudik A, Siegel DJ, Maurer S, et al. Physisorption-based hydrogen storage in carbon nanostructures: Limits and opportunities. Adv Energy Mater. 2022;12(18):2103287.
17. Xie T, Grossman JC. Graph neural networks for molecular and materials modeling. Nat Rev Mater. 2024;9(2):112-30.
