مروری بر روشهای نوين حذف آلودگیهای محيط زيست: فرآيندهای فتولیز و UV/H2O2
الموضوعات :
1 - گروه شيمی، دانشگاه لاورن، لوس آنجلس، کاليفرنيا، ايالات متحده آمريکا
الکلمات المفتاحية: فرآيند فوتولیز, UV/H2O2, آلایندههای رنگزا, آلایندههای دارویی,
ملخص المقالة :
آلایندههای آلی نظیر ترکیبات رنگزا، ترکیبات دارویی، آفتکشها و غیره به طور فزایندهای در منابع آب یافت میشوند و بنابراین باید با فناوریهای نوین تصفیه آب کنترل شوند. فناوریهای اکسیداسیون پیشرفته اغلب به عنوان یک روش موثر برای حذف آلایندههای آلی استفاده میشوند. فرآيند UV/H2O2 نتایج قابل قبولی را در حذف طیف وسیعی از آلایندههای مذکور نشان داده است. در این مقاله، مروری بر کارآیی فرآيندهای فوتولیز و UV/H2O2 در حذف آلایندههای آلی صورت گرفته و نتایج مهم حاصله گزارش گردیده است.
[1] Crittenden, J.C., Trussell, R.R., Hand, D.W., Howe, K.J., Tchobanoglous, G., MWH's Water treatment: Principles and design. John Wiley & Sons, 2012.
[2] Drewes, J.E., Khan, S.J., Water quality & treatment: A handbook on drinking water. New York: McGraw-Hill, 2011.
[3] Daneshvar, N., Salari, D., Khataee, A.R., 2004, Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2, Journal of Photochemistry and Photobiology A: Chemistry, 162, 317.
[4] Behnajady, M.A., Modirshahla, N., Daneshvar, N., Rabbani, M., 2007, Photocatalytic degradation of C.I. Acid Red 27 by immobilized ZnO on glass plates in continuous-mode, Journal of Hazardous Materials, 140, 257.
[5] Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W., 1995, Environmental applications of semiconductor photocatalysis, Chemical Reviews, 95, 69.
[6] Eskandarloo, H., Badiei, A., Behnajady, M.A., 2015, Optimization of UV/inorganic oxidants system efficiency for photooxidative removal of an azo textile dye, Desalination and Water Treatment 55, 226.
[7] Legrini, O., Oliveros, E., Braun, A.M., 1993, Photochemical processes for water treatment, Chemical Reviews, 93, 671.
[8] Al mamoni, F., Sans, C., Esplugas, S., 2004, A comparative study of the advanced oxidation of 2,4 - dichlorophenol, Journal of Hazardous Materials, 107, 123.
[9] Behnajady, M.A., Modirshahla, N., Fathi, H., 2006, Kinetics of decolorization of an azo dye in UV alone and UV/H2O2 processes, Journal of Hazardous Materials, 136, 816.
[10] Hong, A., Lee, J., Cha, Y., Zoh, K.-D., 2022, Propiconazole degradation and its toxicity removal during UV/H2O2 and UV photolysis processes, Chemosphere, 302, 134876.
[11] Modirshahla, N., Behnajady, M.A., 2006, Photooxidative degradation of Malachite Green )MG( by UV/H2O2: Influence of operational parameters and kinetic modeling, Dyes and Pigments, 70, 54.
[12] Behnajady, M.A., Modirshahla, N., Shokri, M., 2004, Photodestruction of Acid Orange 7 )AO7( in aqueous solutions by UV/H2O2: Influence of operational parameters, Chemosphere, 55, 129.
[13] Daneshvar, N., Rabbani, M., Modirshahla, N., Behnajady, M.A., 2004, Critical effect of hydrogen peroxide concentration in photochemical oxidative degradation of C.I. Acid Red 27 )AR27(, Chemosphere, 56, 895
[14] Saeid, S., Behnajady, M.A., 2015, Photooxidative removal of phenazopyridine by UV/H2O2 process in a batch re-circulated annular photoreactor: Influence of operational parameters, Oriental Journal of Chemistry, 31, 1211.
[15] Daneshvar, N., Salari, D., Behnajady, M.A., 2002, Decomposition of anionic sodium dodecylbenzene sulfonate by UV/TiO2 and UV/H2O2 processes: A comparison of reaction rates, Iranian Journal of Chemistry & Chemical Engineering, 21, 55.
[16] Basturk, E., Karatas, M., 2015, Decolorization of antraquinone dye Reactive Blue 181 solution by UV/H2O2 process, Journal of Photochemistry and Photobiology A: Chemistry, 299, 67.
[17] Modirshahla, N., Behnajady, M.A., Rahbarfam, R., Hassani, A., 2012, Effects of operational parameters on decolorization of C.I. Acid Red 88 by UV/H2O2 process: Evaluation of electrical energy consumption, Clean - Soil, Air, Water, 40, 298.
[18] Raducan, A., Bogdan, D., Galaon, T., Oancea, P., 2022, Oxidative removal of Fast Green FCF and Ponceaux 4R dyes by H2O2/NaHCO3, UV and H2O2/UV processes: A comparative study, Journal of Photochemistry and Photobiology A: Chemistry, 431, 114040.
[19] Majcen-Le Marechal, A., Slokar, Y.M., Taufer, T., 1997, Decoloration of chlorotriazine reactive azo dyes with H2O2/UV, Dyes and Pigments, 33, 281.
[20] El-Dein, A.M., Libra, J.A., Wiesmann, U., 2001, Kinetics of decolorization and mineralization of the azo dye reactive black 5 by hydrogen peroxide and UV light, Water Science and Technology, 44, 295.
[21] Georgiou, D., Melidis, P., Aivasidis, A., Gimouhopoulos, K., 2002, Degradation of azo-reactive dyes by ultraviolet radiation in the presence of hydrogen peroxide, Dyes and Pigments, 52, 69.
[22] Cisneros, R.L., Espinoza, A.G., Litter, M.I., 2002, Photodegradation of an azo dye of the textile industry, Chemosphere, 48, 393.
[23] Neamtu, M., Siminiceanu, I., Yediler, A., Kettrup, A., 2002, Kinetics of decolorization and mineralization of reactive azo dyes in aqueous solution by the UV/H2O2 oxidation, Dyes and Pigments, 53, 93.
[24] Shu, H.-Y., Chang, M.-C., 2005, Decolorization and mineralization of a phthalocyanine dye C.I. Direct Blue 199 using UV/H2O2 process, Journal of Hazardous Materials, 125, 96.
[25] Kusic, H., Koprivanac, N., Loncaric-Bozic, A., Papic, S., Peternel, I., Vujevic, D., 2006, Reactive dye degradation by AOPs; Development of a kinetic model for UV/H2O2 process, Chemical and Biochemical Engineering Quarterly, 20, 293.
[26] Rodríguez, E., Peche, R., Merino, J.M., Camarero, L.M., 2007, Decoloring of aqueous solutions of indigocarmine dye in an acid medium by H2O2/UV advanced oxidation, Environmental Engineering Science, 24, 363.
[27] Abdullah, F.H., Rauf, M.A., Ashraf, S.S., 2007, Kinetics and optimization of photolytic decoloration of carmine by UV/H2O2, Dyes and Pigments, 75, 194.
[28] Aleboyeh, A., Olya, M.E., Aleboyeh, H., 2008, Electrical energy determination for an azo dye decolorization and mineralization by UV/H2O2 advanced oxidation process, Chemical Engineering Journal, 137, 518.
[29] Alhamedi, F.H., Rauf, M.A., Ashraf, S.S., 2009, Degradation studies of Rhodamine B in the presence of UV/H2O2, Desalination, 239, 159.
[30] Elmorsi, T.M., Riyad, Y.M., Mohamed, Z.H., Abd El Bary, H.M.H., 2010, Decolorization of Mordant red 73 azo dye in water using H2O2/UV and photo-Fenton treatment, Journal of Hazardous Materials, 174, 352.
[31] Khataee, A.R., Habibi, B., 2010, Photochemical oxidative decolorization of C. I. basic red 46 by UV/H2O2 process: Optimization using response surface methodology and kinetic modeling, Desalination and Water Treatment, 16, 243.
[32] Kasiri, M.B., Khataee, A.R., 2011, Photooxidative decolorization of two organic dyes with different chemical structures by UV/H2O2 process: Experimental design, Desalination, 270, 151.
[33] Haji, S., Benstaali, B., Al-Bastaki, N., 2011, Degradation of methyl orange by UV/H2O2 advanced oxidation process, Chemical Engineering Journal, 168, 134.
[34] Kasiri, M.B., Khataee, A.R., 2012, Removal of organic dyes by UV/H2O2 process: modelling and optimization, Environmental Technology, 33, 1417.
[35] Narayanasamy, L., Murugesan, T., 2014, Degradation of Alizarin Yellow R using UV/H2O2 advanced oxidation process, Environmental Progress & Sustainable Energy, 33, 482.
[36] Ding, X., Gutierrez, L., Croue, J.-P., Li, M., Wang, L., Wang, Y., 2020, Hydroxyl and sulfate radical-based oxidation of RhB dye in UV/H2O2 and UV/persulfate systems: Kinetics, mechanisms, and comparison, Chemosphere, 253, 126655.
[37] Saeid, S., Behnajady, M.A., Tolvanen, P., Salmi, T., 2018, Optimization of photooxidative removal of phenazopyridine from water, Russian Journal of Physical Chemistry A, 92, 876.
[38] Xin, X., Sun, S., Zhou, A., Wang, M., Song, Y., Zhao, Q., Jia, R., 2020, Sulfadimethoxine photodegradation in UV-C/H2O2 system: Reaction kinetics, degradation pathways, and toxicity, Journal of Water Process Engineering, 36, 101293.
[39] Andreozzi, R., Caprio, V., Marotta, R., Radovnikovic, A., 2003, Ozonation and H2O2/UV treatment of clofibric acid in water: a kinetic investigation, Journal of Hazardous Materials, 103, 233.
[40] Vogna, D., Marotta, R., Andreozzi, R., Napolitano, A., D’ischia, M., 2004, Kinetic and chemical assessment of the UV/H2O2 treatment of antiepileptic drug carbamazepine, Chemosphere, 54, 497.
[41] Ocampo-Pérez, R., Sánchez-Polo, M., Rivera-Utrilla, J., Leyva-Ramos, R., 2010, Degradation of antineoplastic cytarabine in aqueous phase by advanced oxidation processes based on ultraviolet radiation, Chemical Engineering Journal, 165, 581.
[42] Jung, Y.J., Kim, W.G., Yoon, Y., Kang, J.-W., Hong, Y.M., Kim, H.W., 2012, Removal of amoxicillin by UV and UV/H2O2 processes, Science of the Total Environment, 420, 160.
[43] Dai, C.-M., Zhou, X.-F., Zhang, Y.-L., Duan, Y.-P., Qiang, Z.-M., Zhang, T.C., 2012, Comparative study of the degradation of carbamazepine in water by advanced oxidation processes, Environmental Technology, 33, 1101.
[44] Deng, J., Shao, Y., Gao, N., Xia, S., Tan, C., Zhou, S., Hu, X., 2013, Degradation of the antiepileptic drug carbamazepine upon different UV-based advanced oxidation processes in water, Chemical Engineering Journal, 222, 150.
[45] Rocha, O.R.S., Pinheiro, R.B., Duarte, M.M.M.B., Dantas, R.F., Ferreira, A.P., Benachour, M., Da Silva, V.L., 2013, Degradation of the antibiotic chloramphenicol using photolysis and advanced oxidation process with UVC and solar radiation, Desalination and Water Treatment, 51, 7269.
[46] Zuorro, A., Fidaleo, M., Fidaleo, M., Lavecchia, R., 2014, Degradation and antibiotic activity reduction of chloramphenicol in aqueous solution by UV/H2O2 process, Journal of Environmental Management, 133, 302.
[47] Borowska, E., Felis, E., Miksch, K., 2015, Degradation of sulfamethoxazole using UV and UV/H2O2 processes, Journal of Advanced Oxidation Technologies, 18, 69.
[48] De Souza Santos, L.V., Meireles, A.M., Lange, L.C., 2015, Degradation of antibiotics norfloxacin by Fenton, UV and UV/H2O2, Journal of Environmental Management, 154, 8.
[49] Dogan, S., Kidak, R., 2016, A plug flow reactor model for UV-based oxidation of amoxicillin, Desalination and Water Treatment, 57, 13586.
[50] García-Galán, M.J., Anfruns, A., Gonzalez-Olmos, R., Rodriguez-Mozaz, S., Comas, J., 2016, Advanced oxidation of the antibiotic sulfapyridine by UV/H2O2: Characterization of its transformation products and ecotoxicological implications, Chemosphere, 147, 451.
[51] Ou, H.-S., Ye, J.-S., Ma, S., Wei, C.-H., Gao, N.-Y., He, J.-Z., 2016, Degradation of ciprofloxacin by UV and UV/H2O2 via multiple-wavelength ultraviolet light-emitting diodes: Effectiveness, intermediates and antibacterial activity, Chemical Engineering Journal, 289, 391.
[52] Shankaraiah, G., Poodari, S., Bhagawan, D., Himabindu, V., Vidyavathi, S., 2016, Degradation of antibiotic norfloxacin in aqueous solution using advanced oxidation processes (AOPs) – A comparative study, Desalination and Water Treatment, 57, 27804.
[53] Shankaraiah, G., Saritha, P., Bhagawan, D.,. Himabindu, V, Vidyavathi, S., 2017, Photochemical oxidation of antibiotic gemifloxacin in aqueous solutions – A comparative study, South African Journal of Chemical Engineering, 24, 8.
[54] Wang, F., Wang, W., Yuan, S., Wang, W., Hu, Z.-H., 2017, Comparison of UV/H2O2 and UV/PS processes for the degradation of thiamphenicol in aqueous solution, Journal of Photochemistry and Photobiology A: Chemistry, 348, 79.
[55] Wang, F., Wang, W., Yuan, S., Wang, W., Hu, Z.-H., 2018, Removal of ciprofloxacin using modified advanced oxidation processes: Kinetics, pathways and process optimization, Journal of Cleaner Production, 171, 1203.
[56] Lin, C.-C., Wu, M.-S., 2018, Feasibility of using UV/H2O2 process to degrade sulfamethazine in aqueous solutions in a large photoreactor, Journal of Photochemistry and Photobiology A: Chemistry, 367, 446.
[57] Chen, L., Cai, T., Cheng, C., Xiong, Z., Ding, D., 2018, Degradation of acetamiprid in UV/H2O2 and UV/persulfate systems: A comparative study, Chemical Engineering Journal, 351, 1137.
[58] Shokri, R., Jalilzadeh Yengejeh, R., Babaei, A.A., Derikvand, E., Almasi, A., 2020, UV activation of hydrogen peroxide for removal of azithromycin antibiotic from aqueous solution: determination of optimum conditions by response surface methodology, Toxin Reviews, 39, 284.
[59] Khorsandi, H., Teymori, M., Aghapour, A.A., Jafari, S.J., Taghipour, S., Bargeshadi, R., 2019, Photodegradation of ceftriaxone in aqueous solution by using UVC and UVC/H2O2 oxidation processes, Applied Water Science, 9, 81.
[60] Sierra, R.S.C., Zúñiga-Benítez, H., Peñuela, G.A., 2020, Experimental data on antibiotic cephalexin removal using hydrogen peroxide and simulated sunlight radiation at lab scale: Effects of pH and H2O2, Data in Brief, 30, 105437.
[61] Liu, X., Liu, Y., Lu, S., Wang, Z., Wang, Y., Zhang, G., Guo, X., Guo, W., Zhang, T., Xi, B., 2020, Degradation difference of ofloxacin and levofloxacin by UV/H2O2 and UV/PS (persulfate): Efficiency, factors and mechanism, Chemical Engineering Journal, 385, 123987.
[62] Dong, W., Yang, C., Zhang, L., Su, Q., Zou, X., Xu, W., Gao, X., Xie, K., Wang, W., 2021, Highly efficient UV/H2O2 technology for the removal of nifedipine antibiotics: Kinetics, co-existing anions and degradation pathways, Chemical Engineering Journal, 16, e0258483.
[63] Daneshvar, N., Zorriyeh Asghar, Y., Behnajady, M.A., 2007, Photooxidative degradation of 4-nitrophenol (4-NP) in UV/H2O2 process: Influence of operational parameters and reaction mechanism, Journal of Hazardous Materials, 139, 275.
[64] Lee, Y.-M., Lee, G., Zoh, K.-D., 2021, Benzophenone-3 degradation via UV/H2O2 and UV/persulfate reactions, Journal of Hazardous Materials, 403, 123591.
[65] Lopez-Alvarez, B., Villegas-Guzman, P., Peñuela, G.A., Torres-Palma, R.A., 2016, Degradation of a toxic mixture of the pesticides carbofuran and iprodione by UV/H2O2: Evaluation of parameters and implications of the degradation pathways on the synergistic effects, Water, Air, & Soil Pollution, 227, 215.
[66] Adak, A., Das, I., Mondal, B., Koner, S., Datta, P., Blaney, L., 2019, Degradation of 2,4-dichlorophenoxyacetic acid by UV 253.7 and UV-H2O2: Reaction kinetics and effects of interfering substances, Emerging Contaminants, 5, 53.
[67] Angeli, S., Adams, E., Masceno, G.P., Lima, R.M., Utzig, L.M., Rodrigues-Silva, F., Prola, L.D.T., Freitas, A.M., Liz, M.V., 2021, Toxicity assays of commercial Chlorpyrifos under UV/H2O2 and UVC photolysis treatments, Water, Air, & Soil Pollution, 232, 353.